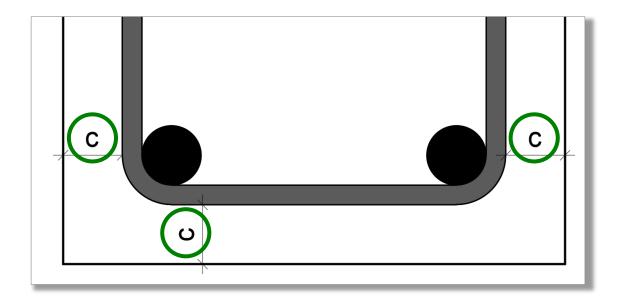

Reinforced-concrete structures Concrete cover

Autor: Jakub Holan

Poslední aktualizace: 24.09.2024 17:25


Every reinforcement bar in a structural member **must always be separated from the external environment** by a sufficiently thick layer of concrete to ensure sufficient:

- **bonding** between the concrete and the reinforcement,
- protection of reinforcement from external effects (fire and corrosion).

The thickness of the concrete cover *c* **must always be greater than the nominal*** **cover layer**

 $c \geq c_{nom}$.

beton4life

* In this context "nominal" can be understood as "required".

Nominal concrete cover *c*_{nom}

The nominal cover layer is determined using the formula

 $c_{nom} = c_{min} + \Delta c_{dev},$

where c_{min} is the minimum cover, Δc_{dev} is the allowance for the design deviation.

Minimum cover *C_{min}*

The minimum cover is related to ensuring **safe transmission of bond forces** and **protection of the reinforcement against the external environment**. The minimum cover is determined using the equation

 $c_{min} = \max(c_{min,b}, c_{min,dur}, 10 \text{ mm}),$

where $c_{min,b}$ is minimum cover due to bond requirement (which is equal to the diameter of the reinforcement bars*),

c_{min,dur} is minimum cover due to environmental conditions.

beton4life * If the rebar diameter is not yet known when calculating the cover, a suitable estimate is $\emptyset_s = 10 \text{ mm}$ for slabs and $\emptyset_s = 18 \text{ mm}$ to 25 mm for beams.

When determining the value of $c_{min,dur}$, we proceed in two steps.

- 1) Determine the **structure class** according to Table 4.3.
- 2) Determine the **cover due to environmental conditions** according to Table 4.4.

When determining the class of the structure, we start from the default class S4 and adjust it according to the type of the structural member using Table 4.3.

Structural class										
Criterion	Exposure class related to environmental conditions									
	XD	XC1	XC2	XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3		
Working life 80 years	increase class by 1									
Working life 100 years	increase class by 2									
Concrete class	decrease class by 1 if concrete class is at least:									
Concrete class	C20/25	C25/30	C30/37	C35/45	C40/50	C40/50	C40/50	C45/55		
Member with slab geometry	decrease class by 1									
Special quality control of concrete	decrease class by 1									

Example: Slab with working life 50 years and concrete class C40/50 exposed to environmental conditions XC3.

1) Default class:

S4

2) Working life 80 years?

 $NO \rightarrow class remains S4$

3) Working life 100 years?

 $NO \rightarrow class remains S4$

4) Is concrete higher than C35/45?

YES \rightarrow reduce class to S3

5) Is it a slab?

YES \rightarrow reduce class to S2

6) Is there a special quality control ensured?

I do not know \rightarrow class remains S2.

Final class: S2

Structural class									
Criterion	Exposure class related to environmental conditions								
	XO	XC1	XC2	XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3	
Working life 80 years				increase	lass by 1				
Working life 100 years				increase	lass by 2				
Concrete class		decr	rease clas	s by 1 if c	oncrete class is at least:				
	C20/25	C25/30	C30/37	C35/45	C40/50	C40/50	C40/50	C45/55	
Member with slab geometry				decrease	class by 1				
Special quality control of concrete				decrease	class by 1				

The thickness of the $c_{min,dur}$ cover is determined **based** on the **structure class** and the **environmental conditions**.

Environmental Requirement for c _{min,dur} (mm)										
Structural	Exposure Class according to Table 4.1									
Class	X0	XC1	XC2 / XC3	XC4	XD1/XS1	XD2 / XS2	XD3 / XS3			
S1	10	10	10	15	20	25	30			
S2	10	10	15	20	25	30	35			
S3	10	10	20	25	30	35	40			
S4	10	15	25	30	35	40	45			
S5	15	20	30	35	40	45	50			
S6	20	25	35	40	45	50	55			

You can <u>check</u> your calculation using this <u>interactive tool</u>.

Example: Slab with structure class S2 exposed to environmental conditions XC3.

 $\rightarrow c_{min,dur} = 15 \text{ mm}.$

Environmental Requirement for c _{min,dur} (mm)									
Structural Exposure Class according to Table 4.1									
Class	X0	XC1	XC2 / XC3	XC4	XD1 / XS1	XD2 / XS2	XD3 / XS3		
S1	10	10	10	15	20	25	30		
S2	10	10	15	20	25	30	35		
S3	10	10	20	25	30	35	40		
S4	10	15	25	30	35	40	45		
S5	15	20	30	35	40	45	50		
S6	20	25	35	40	45	50	55		

Allowance for deviation Δc_{dev}

We must add a "reserve" part of the cover Δc_{dev} to the minimum cover c_{min}^* .

For monolithic structures $\Delta c_{dev} \in \langle 5 \text{ mm}, 10 \text{ mm} \rangle$, usually $\Delta c_{dev} = 10 \text{ mm}$.

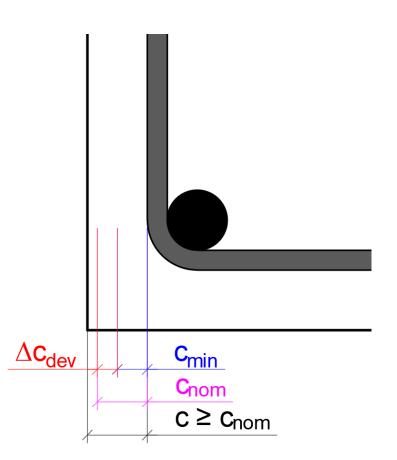
For prefabricated structures $\Delta c_{dev} \in \langle 0 \text{ mm}, 5 \text{ mm} \rangle$, usually $\Delta c_{dev} = 5 \text{ mm}$.

beton4life * We must create a certain reserve in the cover, because errors can occur on the construction site or during production.

Nominal concrete cover *c_{nom}*

The final nominal concrete cover is

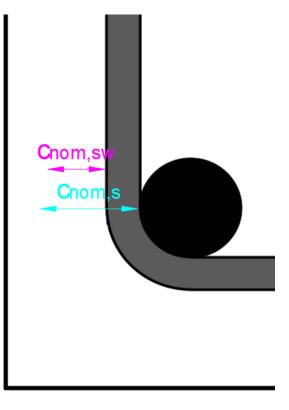
 $c_{nom} = c_{min} + \Delta c_{dev},$


where c_{min} is the minimum cover, Δc_{dev} is the allowance for the design deviation.

Designed concrete cover *c*

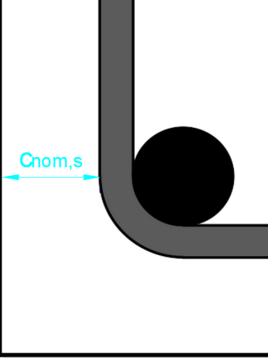
The actual thickness of the concrete cover *c* must be designed to satisfy the condition

 $c \geq c_{nom}$,


and the thickness of the concrete cover **should be a multiple of 5 mm**.

Various rebar diameters

If there are **rebars of various diameters or positions** in the element^{*}, the **nominal concrete cover should be calculated separately** for each rebar.



beton4life

Various rebar diameters

However, we can simplify the calculation* and calculate the nominal cover only for the **largest diameter** of the reinforcement and measure it **from the reinforcement closest to the surface**.

Exact calculation procedure

This presentation serves as an introduction to the topic of the calculation of the concrete cover, and therefore some information are omitted from it.

For example, according to the standard, the minimum cover is determined as $c_{min} = \max(c_{min,b}, c_{min,dur} + \Delta c_{dur,\gamma} - \Delta c_{dur,st} - \Delta c_{dur,add}, 10 \text{ mm}),$ where the coefficients $\Delta c_{dur,i}$ are usually considered as 0 and have, therefore, been omitted from the presentation.

When calculating the concrete cover in a real project, always perform the calculation exactly according to the procedure described in the EN 1992-1-1 standard!

Thank you for your attention