CM01 - Concrete and Masonry Structures 1
HW4 - Design of column reinforcement

Task 1

Task 1 - Frame structure

In Task 1, frame structure will be designed.

Task 1 - Assignment

Geometry: $\boldsymbol{R}, \boldsymbol{a}[\mathrm{m}]$ - horizontal dimensions, $\boldsymbol{h}[\mathrm{m}]$ - floor height, \boldsymbol{n} - number of floors
$\begin{array}{ll}\text { Materials: } & \text { Concrete - concrete class } \\ & \text { Steel B } 500 \mathrm{~B}\left(\mathrm{f}_{\text {vk }}=500 \mathrm{MPa}\right)\end{array}$
Loads:
Other permanent load of typical floor
Other permanent load of the roof Live load of typical floor Live load of the roof Self-weight of the slab

```
(g-g}\mp@subsup{g}{\mathrm{ Ioork, }}{}[\textrm{kN}/\mp@subsup{\textrm{m}}{}{2}
(g-g}\mp@subsup{g}{\mathrm{ roofk }}{}[\textrm{kN}/\mp@subsup{\textrm{m}}{}{2}
q|ooo.k
q}\mp@subsup{q}{\mathrm{ rofts }}{}=0,75\textrm{kN}/\mp@subsup{\textrm{m}}{}{2
go,k (calculate from the slab depth)
```


Another parameters: $\quad \boldsymbol{S}$ - Exposure class related to environmental conditions

 \boldsymbol{Z} - Working life of the structureParameters in bold are individual parameters, which you can find on the course website.

[^0]

Task 1 - Assignment goals

Our goal will be to:

- Design the dimensions of all elements.
- Do detailed calculation of 2D frame - calculation of bending moments, shear and normal forces using FEM software.
- Design steel reinforcement in the 1st floor members:
- beam,
- column.
- Draw layout of the reinforcement.

Design of column reinforcement

Design of column reinforcement

Using the maximal values of internal forces from the „envelope" of internal forces, we will design and assess longitudinal reinforcement of the column using these steps:

1) Calculate geometric imperfections and design moments.
2) Assess slenderness of the column.
3) Design reinforcement.
4) Assess the column with reinforcement.

Geometric imperfections and design moments

Geometric imperfections

We calculated moments on ideal model of frame structure, but real structures are not perfect. Geometric imperfections cause additional bending moments.

Geometric imperfections

Geometric imperfections:

Geometric imperfections

Additional moment due to geometric imperfection:

Design moments

Calculate bending moments with the effect of geometric imperfections (M_{01} and M_{02}) in the head and foot of the column for combination CO1

We will use these values later to check the load-bearing capacity.

Slenderness of the column

Slenderness of the column

We must check if the column is slender or massive using the condition:
$\lambda \leq \lambda_{\text {lim }}$
where λ is the slenderness of the column, $\lambda_{\text {lim }}$ is the limiting slenderness.

Slenderness of the column

Slenderness of the column:
Cross-sectional Dimensions of the crossarea of the column section of the column

$$
\lambda=\frac{l_{0}}{i}
$$

$I=\frac{1}{12} b_{\text {col }} h_{\text {col }}^{3}$

Limiting slenderness:

Effect of creep, Effect of reinforcement Effect of bending

$$
\mathrm{A}=0.7
$$

Effect of bending moments

Effect of bending moments:

$$
\begin{aligned}
& C=1,7-r_{m} \\
& r_{m}=\frac{M_{01}}{M_{02}}
\end{aligned}
$$

Effect of bending moments

If the bending moments are caused predominantly by the imperfections (i.e., $M_{i m p}>M_{E d, F E M}$), we should always assume $\mathbf{C}=\mathbf{0 . 7}$.

Slenderness of the column

We must check if the column is slender or massive using the condition:
$\lambda \leq \lambda_{\text {lim }}$
where λ is the slenderness of the column,
$\lambda_{\text {lim }}$ is the limiting slenderness.

If $\lambda \leq \lambda_{\text {lim }}$, the column is robust.
If $\lambda>\lambda_{\text {lim }}$, the column is slender.
If your column is slender, increase bending moments by approximately 30% (simplification).

Design of reinforcement

Design of reinforcement

When designing the reinforcement, we use an estimation based on the the presumption of pure compression (uniformly distributed compression over the whole cross-section).

Design of reinforcement

We employ the limit-force assumption which means "assume that the load-bearing capacity will be equal to the acting normal force":

$$
\begin{aligned}
& N_{R d}=N_{E d} \\
& 0.8 A_{c} f_{c f}+A_{s} f_{y d}=N_{E d}
\end{aligned}
$$

From this equation, we can derive equation for required reinforcement:

If the equation gives $A_{s, r e q, 1}<0$, the minimum reinforcement of 4 ø12 mm should be designed.

Design of reinforcement

For the design, you can also employ a more complex but more precise method using a graph for design of symmetrical reinforcement.

Design of reinforcement

For the design, you can also employ a more complex but more precise method using a graph for design of symmetrical reinforcement.

Required reinforcement area:

$$
\rightarrow A_{\mathrm{s}, \mathrm{req}, 2}=\frac{\omega A_{\mathrm{c}} f_{\mathrm{cd}}}{f_{\mathrm{yd}}}
$$

Design of reinforcement

Design number and diameter of bars:
Example: DESIGN: $6 \mathrm{x} \varnothing 16\left(\mathrm{~A}_{\mathrm{s}, \mathrm{prov}}=1206 \mathrm{~mm}^{2}\right)$

The design must satisfy:

$$
\boldsymbol{A}_{\boldsymbol{s}, \text { prov }} \geq \boldsymbol{A}_{\boldsymbol{s}, \text { req }} .
$$

Also, the cross-section must be symmetrically reinforced (i.e., same number of bars on each side) - that means that we must design odd number of bars (4, 6, 8 etc.).

Design of reinforcement

Check detailing rules for the designed reinforcement:

$$
\begin{aligned}
& A_{\mathrm{s}, \mathrm{prov}} \geq A_{\mathrm{s}, \text { min }}=\max \left(0.1 \frac{N_{\mathrm{Ed}}}{f_{\mathrm{yd}}} ; 0.002 A_{\mathrm{c}}\right) \\
& A_{\mathrm{s}, \mathrm{prov}} \leq A_{\mathrm{s}, \text { max }}=0,04 A_{\mathrm{c}}
\end{aligned}
$$

Check of column

Check of column

We check the column using a "M-N interaction diagram (ID)".

Check of column

The ID is made of many "load-bearing capacity" points.

Check of column

We will calculate only few points and approximate the shape by connecting the lines.

Check of column

The ID is created by:

1) Calculating main points of interaction diagram (0 to 6) - see below.
2) Connecting points by lines (simplification).
3) Calculating minimum bending moment M_{0}.
4) Restricting axial resistance using M_{0}.

If internal forces lay inside the curve, the condition for the assessment of the column is satisfied. If not, adjust the design (but you don't have to recalculate the ID).

See the example of ID calculation on CM01 website.

Check of column

Interaction diagram - all points

For each calculated point, the following is true.
The normal force load-bearing capacity is: the sum the partial internal forces.

The bending moment load-bearing capacity is: the sum the moments generated by the partial internal forces.

Point 0 - pure (axial) compression

Axial compression (maximum normal load-bearing capacity in compr.):

$$
\begin{aligned}
& N_{\mathrm{Rd}, 0}=F_{\mathrm{c}}+F_{\mathrm{s} 1}+F_{\mathrm{s} 2}=b_{\mathrm{col}} h_{\mathrm{col} 1} f_{\mathrm{cd}}+A_{\mathrm{s} 1} \sigma_{\mathrm{s}}+A_{\mathrm{s} 2} \sigma_{\mathrm{s}} \\
& M_{\mathrm{Rd}, 0}=F_{\mathrm{s} 2} z_{\mathrm{s} 2}-F_{\mathrm{s} 1} z_{\mathrm{s} 1}=\left(A_{\mathrm{s} 2} z_{\mathrm{s} 2}-A_{\mathrm{s} 1} z_{\mathrm{s} 1}\right) \sigma_{\mathrm{s}}
\end{aligned}
$$

In our case, $A_{s 1}=A_{s 2}=A_{s, p r o v} / 2$ and $z_{s 1}=z_{s 2}=d-h / 2$ because we have symmetrical reinforcement.

Point 1 - strain in tensile reinforcement is 0

Strain in tensile reinforcement is 0 (almost whole cross-section is compressed):

$$
\begin{aligned}
& N_{\mathrm{Rd}, 1}=F_{\mathrm{c}}+F_{\mathrm{c} 2}=0.8 b_{\mathrm{col} 1} d f_{\mathrm{cd}}+A_{\mathrm{s} 2} f_{\mathrm{yd}} \\
& M_{\mathrm{Rd}, 1}=F_{\mathrm{c}} z_{\mathrm{c}}+F_{\mathrm{s} 2} z_{\mathrm{s} 2}=0.8 b_{\mathrm{col} 1} d f_{\mathrm{cd}}\left(\frac{h}{2}-0.4 d\right)+A_{\mathrm{s} 2} f_{\mathrm{yd}} z_{\mathrm{s} 2}
\end{aligned}
$$

Factor expressing the difference between real and idealized stress distribution, see HW3.

Point 2 - tensile reinforcement at yield stress

Stress in tensile reinforcement is $\sigma_{s 1}=f_{y d}$ (maximum bending moment resistance):

$N_{\mathrm{Rd}, 2}=F_{\mathrm{c}}+F_{\mathrm{s} 2}-F_{\mathrm{s} 1}=0.8 b_{\mathrm{co1}} x_{\mathrm{bal}, 1} f_{\mathrm{cd}}+A_{\mathrm{s} 2} \sigma_{\mathrm{s} 2}-A_{\mathrm{s} 1} f_{y d}$
$M_{\mathrm{Rd}, 2}=F_{\mathrm{c}} z_{\mathrm{c}}+F_{\mathrm{s} 2} z_{\mathrm{s} 2}+F_{\mathrm{s} 1} z_{\mathrm{s} 1}=0.8 b_{\mathrm{co1} 1} x_{\mathrm{bal}, 1} f_{\mathrm{cd}}\left(\frac{h}{2}-0.4 x_{\mathrm{bal}, 1}\right)+A_{\mathrm{s} 2} \sigma_{\mathrm{s} 2} z_{\mathrm{s} 2}+A_{\mathrm{s} 1} f_{\mathrm{yd}} z_{\mathrm{s} 1}$
$x_{\mathrm{b} 1,}=\xi_{\mathrm{b} 1,} d=\frac{700}{} d$

Point 2 - tensile reinforcement at yield stress

else

$$
\sigma_{s 2}=\varepsilon_{s 2} E_{\mathrm{s}}
$$

How to find stress in compressed reinforcement ($\sigma_{s 2}$)?
First, we find the strain in the compressed reinforcement:

$$
\varepsilon_{\mathrm{s} 2}=\varepsilon_{\mathrm{cd}}\left(1-\frac{d_{2}}{x_{\mathrm{bal}, 1}}\right) \quad \begin{aligned}
& \text { Distance from surface of the column to the } \\
& \text { centroid of compressed reinforcement. } \\
& \\
& \begin{array}{l}
\text { Limit strain of concrete: } \\
\varepsilon_{\mathrm{cd}}=0.0035
\end{array}
\end{aligned}
$$

Then, we calculate the stress in the compressed reinforcement:

$$
\begin{array}{ll}
\sigma_{S 2}=E_{S} \varepsilon_{s 2} & \text { if } \varepsilon_{s 2}<\varepsilon_{y d} \\
\sigma_{S 2}=f_{y d} & \text { if } \varepsilon_{s 2} \geq \varepsilon_{y d}
\end{array} \quad \text { Reinforcement yield strain: } \varepsilon_{y d}=f_{y d} / E_{s}
$$

Elastic modulus of steel reinforcement: $\mathrm{E}_{\mathrm{s}}=200000 \mathrm{MPa}$

Point 3 - pure bending

Pure bending (no normal force):

$N_{\mathrm{Rd}, 3}=F_{\mathrm{c}}+F_{\mathrm{s} 2}-F_{\mathrm{s} 1}=0$

$$
\begin{gathered}
M_{\mathrm{Rd}, 3}=F_{\mathrm{c}} z_{\mathrm{c}}+F_{\mathrm{s} 2} z_{\mathrm{s} 2}+F_{\mathrm{ss} 1} z_{\mathrm{s} 1}=0.8 b_{\text {col }} x f_{\mathrm{cd}}\left(\frac{h}{2}-0.4 x\right)+A_{\mathrm{s} 2} \sigma_{\mathrm{s} 2} z_{\mathrm{s} 2}+A_{\mathrm{s} 1} f_{\mathrm{yd}} z_{\mathrm{s} 1} \\
\\
\begin{array}{l}
\text { We have } 2 \text { unknowns: } \\
\begin{array}{l}
\text { height of compressed part }(\mathrm{x}),
\end{array} \\
\begin{array}{l}
\text { sowens in compressed reinforcement }\left(\sigma_{\mathrm{s} 2}\right)
\end{array} \\
\text { How do we obtain them? }
\end{array}
\end{gathered}
$$

Point 3 - pure bending

From "zero normal force" equation

$$
\begin{aligned}
& F_{s}-F_{c}-F_{s 2}=0 \\
& A_{s 1} \sigma_{s 1}-0.8 x b f_{c d}-A_{s 2} \sigma_{s 2}=0,
\end{aligned}
$$

an equation for compressive height can be derived:

$$
x=\frac{A_{s} f_{y d}-A_{s} \sigma_{s 2}}{0.8 b f_{c d}} .
$$

From Hook's law and similar triangles of strain, an equation for stress in compressed reinforcement can be derive:

$$
\sigma_{s 2}=\underbrace{\frac{0.0035}{x}\left(x-d_{2}\right)} E_{s} .
$$

Point 3 - pure bending

From the 2 equations with 2 unknows:

$$
\begin{aligned}
& x=\frac{A_{s} f_{y d}-A_{s} \sigma_{s 2}}{0.8 b_{c o l} f_{c d}} \\
& \sigma_{s 2}=\frac{0.0035}{x}\left(x-d_{2}\right) E_{s}
\end{aligned}
$$

a single quadratic equation for $\sigma_{s 2}$ can be derived:

$$
\sigma_{\mathrm{s} 2}^{2} A_{\mathrm{s} 2}-\sigma_{\mathrm{s} 2}\left(A_{\mathrm{s} 1} f_{\mathrm{yd}}+A_{\mathrm{s} 2} \varepsilon_{\mathrm{cd}} E_{\mathrm{s}}\right)+\varepsilon_{\mathrm{cd}} E_{\mathrm{s}}\left(A_{\mathrm{s} 1} f_{\mathrm{yd}}-0.8 b_{\mathrm{col}} f_{\mathrm{cd}} d_{2}\right)=0
$$

Point 3 - pure bending

By solving equation

$$
\sigma_{\mathrm{s} 2}^{2} A_{\mathrm{s} 2}-\sigma_{\mathrm{s} 2}\left(A_{\mathrm{s} 1} f_{\mathrm{yd}}+A_{\mathrm{s} 2} \varepsilon_{\mathrm{cd}} E_{\mathrm{s}}\right)+\varepsilon_{\mathrm{cd}} E_{\mathrm{s}}\left(A_{\mathrm{s} 1} f_{\mathrm{yd}}-0.8 b_{\mathrm{col}} f_{\mathrm{cd}} d_{2}\right)=0
$$

we will receive 2 results for $\sigma_{s 2}$, but only one results will "make sense".

We will use the realistic result of $\sigma_{s 2}$ to calculate the compressive height:

$$
x=\frac{A_{s} f_{y d}-A_{s} \sigma_{s 2}}{0.8 b_{c o l} f_{c d}}
$$

Finally, we will use the calculated x and $\sigma_{s 2}$ in the equation for $M_{R d, 3}$.

Point 3 - pure bending

Finally, we will use the calculated x and $\sigma_{s 2}$ in the equation for $\boldsymbol{M}_{\boldsymbol{R} d, 3}$.

$$
\begin{aligned}
& N_{\mathrm{Rd}, 3}=F_{\mathrm{c}}+F_{\mathrm{s} 2}-F_{\mathrm{s} 1}=0 \\
& M_{\mathrm{Rd}, 3}=F_{\mathrm{c}} z_{\mathrm{c}}+F_{\mathrm{s} 2} z_{\mathrm{s} 2}+F_{\mathrm{s} 1} z_{\mathrm{s} 1}=0.8 b_{\mathrm{co} 1} x f_{\mathrm{cd}}\left(\frac{h}{2}-0.4 x\right)+A_{\mathrm{s} 2} \sigma_{\mathrm{s} 2} z_{\mathrm{s} 2}+A_{\mathrm{s} 1} f_{\mathrm{yd}} z_{\mathrm{s} 1}
\end{aligned}
$$

Point 4 - strain in compressive reinforcement is 0

Strain in compressive reinforcement is 0 (almost whole cross-section is in tension):

$$
\begin{aligned}
N_{\mathrm{Rd}, 4} & =F_{\mathrm{sl}}=A_{\mathrm{s} 1} f_{\mathrm{yd}} \\
M_{\mathrm{Rd}, 4} & =F_{\mathrm{sl}} z_{\mathrm{sl}}=A_{\mathrm{sl} 1} f_{\mathrm{yd}} z_{\mathrm{s} 1}
\end{aligned}
$$

Point 5 - pure (axial) tension

Axial tension (maximum normal load-bearing capacity in tension):

$$
\begin{aligned}
N_{\mathrm{Rd}, 5} & =F_{\mathrm{s} 1}+F_{\mathrm{s} 2}=\left(A_{\mathrm{s} 1}+A_{\mathrm{s} 2}\right) f_{\mathrm{yd}} \\
M_{\mathrm{Rd}, 5} & =F_{\mathrm{s} 1} z_{\mathrm{s} 1}-F_{\mathrm{s} 2} z_{\mathrm{s} 2}=\left(A_{\mathrm{s} 1} z_{\mathrm{s} 1}-A_{\mathrm{s} 2} z_{\mathrm{s} 2}\right) f_{\mathrm{yd}}
\end{aligned}
$$

Interaction diagram

Using the calculated points 0 to 5 , we create the ID.

Minimal eccentricity

When assessing the column, we also must consider minimal eccentricity

$$
e_{0}=\max \left(\frac{h_{\mathrm{col}}}{30} ; 20 \mathrm{~mm}\right)
$$

and calculate the minimal bending moment

$$
M_{0}=N_{\mathrm{R}, 0} e_{0}
$$

Minimal eccentricity

Using minimal bending moment, we restrict the ID (pure compression can never occur).

Column assessment

Using the ID, we can assess the column.

- If the point of internal forces lies outside the ID - column does not satisfy the assessment.
- If the point of internal forces lies inside the ID near its border - column does satisfy the assessment and is economic.
- If the point of internal forces lies inside the ID far from its border - column does satisfy the assessment but is not
 economic.

Next week

Next week

Next week we will focus on reinforcement drawings of the beam and column.

thank you for your attention

Recognitions

I thank Assoc. Prof. Petr Bílý for his original seminar presentation and other supporting materials from which this presentation was created.

[^0]: Your individual parameters:
 https://docs.google.com/spreadsheets/d/1uQluyyKEcG5jaZVLrsmm1ZRRNib ow3MI wgZSEDgnW8/

