

CM01 – Concrete and Masonry Structures 1 HW4 – Design of column reinforcement

Author: Jakub Holan Last update: 04.10.2023 22:03

Task 1

Task 1 – Frame structure

In Task 1, frame structure will be designed.

Task 1 – Assignment

<u>Geometry:</u> R, a [m] – horizontal dimensions, h [m] – floor height, n – number of floors

<u>Materials:</u> Concrete – **concrete class** Steel B 500 B (f_{xk} = 500 MPa)

Loads: Other permanent load of typical floor Other permanent load of the roof Live load of typical floor Live load of the roof Self-weight of the slab $(g-g_0)_{\text{floor.k}} [kN/m^2]$ $(g-g_0)_{\text{roof.k}} [kN/m^2]$ $g_{\text{floor.k}} [kN/m^2]$ $g_{\text{roof.k}} = 0,75 \text{ kN/m}^2$ $g_{0,k}$ (calculate from the slab depth)

Another parameters:

S – Exposure class related to environmental conditions Z – Working life of the structure

Parameters in bold are individual parameters, which you can find on the course website.

Your individual parameters:

https://docs.google.com/spreadsheets/d/1uQluyyKEcG5jaZVLrsmm1ZRRNib_ow3MI wgZSEDgnW8/

Task 1 – Assignment goals

Our goal will be to:

- Design the dimensions of all elements.
- Do detailed calculation of 2D frame calculation of bending moments, shear and normal forces using FEM software.
- Design steel reinforcement in the 1st floor members:
 - beam,
 - column.
- Draw layout of the reinforcement.

Design of column reinforcement

Design of column reinforcement

Using the maximal values of internal forces from the *"*envelope" of internal forces, we will design and assess **longitudinal reinforcement** of the column using these steps:

- 1) Calculate **geometric imperfections** and **design moments**.
- 2) Assess **slenderness** of the column.
- 3) **Design** reinforcement.
- 4) Assess the column with reinforcement.

Geometric imperfections and design moments

Geometric imperfections

We calculated moments on ideal model of frame structure, but real structures are not perfect. Geometric imperfections cause additional bending moments.

Geometric imperfections

Geometric imperfections:

Clear length of the column in the 1st floor.

Effective length of the column. In our case: $l_0 = 0.8h$

Reduction factor for number of members:

$$\alpha_m = \sqrt{0, 5 \cdot \left(1 + \frac{1}{m}\right)}$$

Number of columns in one frame: m = 3

Geometric imperfections

Additional moment due to geometric imperfection:

 $M_{imp} = N_{Ed} e_i$ Normal force in given cross-section (head or foot of the column)

Design moments

Calculate bending moments with the effect of geometric imperfections $(M_{01} \text{ and } M_{02})$ in the head and foot of the column for combination CO1

We will use these values later to check the load-bearing capacity.

We must check if the column is slender or massive using the condition:

- $\lambda \leq \lambda_{lim}$
- where λ is the slenderness of the column,
 - λ_{lim} is the limiting slenderness.

Slenderness of the column:

Limiting slenderness:

Effect of creep, Effect of reinforcement A = 0.7Final ratio, B = 1.1Effect of bending moments
Effect of bending moments
To be more than 75. $N = \frac{N_{Ed}}{A_c f_{cd}}$

Effect of bending moments

Effect of bending moments:

$$C = 1, 7 - r_m$$
$$r_m = \frac{M_{01}}{M_{02}}$$

Effect of bending moments

If the bending moments are caused predominantly by the imperfections (i.e., $M_{imp} > M_{Ed,FEM}$), we should always assume **C** = **0.7**.

We must check if the column is slender or massive using the condition:

 $\begin{array}{ll} \lambda \leq \lambda_{lim} \\ \text{where} \quad \lambda & \text{is the slenderness of the column,} \\ \lambda_{lim} & \text{is the limiting slenderness.} \end{array}$

If $\lambda \leq \lambda_{lim}$, the column is robust. If $\lambda > \lambda_{lim}$, the column is slender.

If your column is slender, increase bending moments by approximately 30 % (simplification).

When designing the reinforcement, we use an **estimation** based on the the **presumption of pure compression** (uniformly distributed compression over the whole cross-section).

We employ the **limit-force assumption** which means *"assume that the load-bearing capacity will be equal to the acting normal force"*:

$$N_{Rd} = N_{Ed}$$

$$0.8A_c f_{cf} + A_s f_{yd} = N_{Ed}$$

From this equation, we can derive equation for required reinforcement:

If the equation gives $A_{s,req,1} < 0$, the minimum reinforcement of 4 ø12 mm should be designed.

For the design, you can also employ a **more complex but more precise method** using a graph for design of symmetrical reinforcement.

beton4life

For the design, you can also employ a more complex but more precise method using a graph for design of symmetrical reinforcement.

Required reinforcement area:

$$\rightarrow A_{\rm s,req,2} = \frac{\omega A_{\rm c} f_{\rm cd}}{f_{\rm yd}}$$

Design number and diameter of bars:

Example: **DESIGN**: $6x \ Ø16 \ (A_{s,prov} = 1206 \ mm^2)$

The design must satisfy:

 $A_{s,prov} \geq A_{s,req}$.

Also, the cross-section must be symmetrically reinforced (i.e., same number of bars on each side) – that means that we **must design** odd number of bars (4, 6, 8 etc.).

Check detailing rules for the designed reinforcement:

$$A_{\rm s,prov} \ge A_{\rm s,min} = \max\left(0.1 \frac{N_{\rm Ed}}{f_{\rm yd}}; 0.002 A_{\rm c}\right)$$
$$A_{\rm s,prov} \le A_{\rm s,max} = 0,04 A_{\rm c}$$

We check the column using a "M-N interaction diagram (ID)".

The ID is made of **many** "load-bearing capacity" **points**.

We will calculate only **few points and approximate the shape** by connecting the lines.

The ID is created by:

- 1) Calculating main points of interaction diagram (0 to 6) see below.
- 2) Connecting points by **lines** (simplification).
- 3) Calculating **minimum bending** moment M_0 .
- **4)** Restricting axial resistance using M_0 .

If internal forces lay inside the curve, the condition for the assessment of the column is satisfied. If not, adjust the design (but you don't have to recalculate the ID).

See the example of ID calculation on CM01 website.

Interaction diagram – all points

For each calculated point, the following is true.

The **normal force** load-bearing **capacity** is: **the sum the partial internal forces**.

The **bending moment** load-bearing **capacity** is: the sum the moments generated by the partial internal forces.

Point 0 – pure (axial) compression

Axial compression (maximum normal load-bearing capacity in compr.):

$$N_{\rm Rd,0} = F_{\rm c} + F_{\rm s1} + F_{\rm s2} = b_{\rm col} h_{\rm col} f_{\rm cd} + A_{\rm s1} \sigma_{\rm s} + A_{\rm s2} \sigma_{\rm s}$$

$$M_{\rm Rd,0} = F_{\rm s2} z_{\rm s2} - F_{\rm s1} z_{\rm s1} = (A_{\rm s2} z_{\rm s2} - A_{\rm s1} z_{\rm s1}) \sigma_{\rm s}$$

400 MPA (see the design of reinforcement)

In our case, $A_{s1} = A_{s2} = A_{s,prov}/2$ and $z_{s1} = z_{s2} = d - h/2$ because we have symmetrical reinforcement.

beton4life

Point 1 – strain in tensile reinforcement is 0

Strain in tensile reinforcement is 0 (almost whole cross-section is compressed):

 $N_{\rm Rd,1} = F_{\rm c} + F_{\rm c2} = 0.8b_{\rm col}df_{\rm cd} + A_{\rm s2}f_{\rm yd}$

$$M_{\rm Rd,1} = F_{\rm c} z_{\rm c} + F_{\rm s2} z_{\rm s2} = 0.8b_{\rm col}df_{\rm cd} \left(\frac{h}{2} - 0.4d\right) + A_{\rm s2}f_{\rm yd} z_{\rm s2}$$

Factor expressing the difference between real and idealized stress distribution, see HW3.

Point 2 – tensile reinforcement at yield stress

Stress in tensile reinforcement is $\sigma_{s1} = f_{vd}$ (maximum bending moment

resistance): T=ted Es = Eyd $N_{\rm Rd,2} = F_{\rm c} + F_{\rm s2} - F_{\rm s1} = 0.8b_{\rm col}x_{\rm bal,1}f_{\rm cd} + A_{\rm s2}\sigma_{\rm s2} - A_{\rm s1}f_{\rm vd}$ $M_{\rm Rd,2} = F_{\rm c} z_{\rm c} + F_{\rm s2} z_{\rm s2} + F_{\rm s1} z_{\rm s1} = 0.8b_{\rm col} x_{\rm bal,1} f_{\rm cd} \left(\frac{h}{2} - 0.4x_{\rm bal,1}\right) + A_{\rm s2} \sigma_{\rm s2} z_{\rm s2} + A_{\rm s1} f_{\rm yd} z_{\rm s1}$ $x_{\text{bal},1} = \xi_{\text{bal},1} d = \frac{700}{700 + f} d$

beton4life

Point 2 – tensile reinforcement at yield stress else $\sigma_{s2} = \varepsilon_{s2}E_s$ How to find stress in compressed reinforcement (σ_{s2})?

First, we find the strain in the compressed reinforcement:

 $\mathcal{E}_{s2} = \mathcal{E}_{cd} \left(1 - \frac{d_2}{x_{bal,1}} \right)$ Distance from surface of the column to the centroid of compressed reinforcement.

Limit strain of concrete: $\epsilon_{cd} = 0.0035$

Then, we calculate the stress in the compressed reinforcement:

$$\sigma_{S2} = E_s \varepsilon_{S2} \qquad \text{if } \varepsilon_{S2} < \varepsilon_{yd} \\ \sigma_{S2} = f_{yd} \qquad \text{if } \varepsilon_{S2} \ge \varepsilon_{yd} \qquad \text{Reinforcement yield strain: } \varepsilon_{yd} = f_{yd}/E_s$$

Elastic modulus of steel reinforcement: $E_s = 200\ 000\ MPa$

Pure bending (no normal force):

 $N_{\rm Rd,3} = F_{\rm c} + F_{\rm s2} - F_{\rm s1} = 0$

$$M_{\rm Rd,3} = F_{\rm c} z_{\rm c} + F_{\rm s2} z_{\rm s2} + F_{\rm s1} z_{\rm s1} = 0.8b_{\rm col} x f_{\rm cd} \left(\frac{h}{2} - 0.4x\right) + A_{\rm s2} \sigma_{\rm s2} z_{\rm s2} + A_{\rm s1} f_{\rm yd} z_{\rm s1}$$

We have 2 unknowns:

- height of compressed part (\dot{x}) ,
- stress in compressed reinforcement (σ_{s2})

How do we obtain them?

beton4life

From "zero normal force" equation

$$F_{s} - F_{c} - F_{s2} = 0$$

$$A_{s1}\sigma_{s1} - 0.8xbf_{cd} - A_{s2}\sigma_{s2} = 0,$$

an equation for compressive height can be derived:

$$\mathbf{x} = \frac{A_s f_{yd} - A_s \sigma_{s2}}{0.8 b f_{cd}}.$$

From **Hook's law and similar triangles** of strain, an equation for stress in compressed reinforcement can be derive:

$$\sigma_{s2} = \frac{0.0035}{x} (x - d_2) E_s.$$

beton4life

From the 2 equations with 2 unknows:

$$\boldsymbol{x} = \frac{A_s f_{yd} - A_s \boldsymbol{\sigma_{s2}}}{0.8 b_{col} f_{cd}}$$

$$\sigma_{s2} = \frac{0.0035}{x} (x - d_2) E_s$$

a single quadratic equation for σ_{s2} can be derived:

$$\sigma_{s2}^{2}A_{s2} - \sigma_{s2}\left(A_{s1}f_{yd} + A_{s2}\varepsilon_{cd}E_{s}\right) + \varepsilon_{cd}E_{s}\left(A_{s1}f_{yd} - 0.8b_{col}f_{cd}d_{2}\right) = 0$$

By solving equation

$$\sigma_{s2}^{2}A_{s2} - \sigma_{s2}\left(A_{s1}f_{yd} + A_{s2}\varepsilon_{cd}E_{s}\right) + \varepsilon_{cd}E_{s}\left(A_{s1}f_{yd} - 0.8b_{col}f_{cd}d_{2}\right) = 0$$

we will receive 2 results for σ_{s2} , but **only one results** will "make sense".

We will use the realistic result of σ_{s2} to calculate the compressive height: $x = \frac{A_s f_{yd} - A_s \sigma_{s2}}{0.8 b_{col} f_{cd}}.$

Finally, we will use the calculated x and σ_{s2} in the equation for $M_{Rd,3}$.

Finally, we will use the calculated x and σ_{s2} in the equation for $M_{Rd,3}$.

$$N_{\text{Rd},3} = F_{\text{c}} + F_{\text{s}2} - F_{\text{s}1} = 0$$

$$M_{\text{Rd},3} = F_{\text{c}} z_{\text{c}} + F_{\text{s}2} z_{\text{s}2} + F_{\text{s}1} z_{\text{s}1} = 0.8 b_{\text{col}} x f_{\text{cd}} \left(\frac{h}{2} - 0.4x\right) + A_{\text{s}2} \sigma_{\text{s}2} z_{\text{s}2} + A_{\text{s}1} f_{\text{yd}} z_{\text{s}1}$$

Point 4 – strain in compressive reinforcement is 0

Strain in compressive reinforcement is 0 (almost whole cross-section is in tension):

$$N_{\rm Rd,4} = F_{\rm s1} = A_{\rm s1} f_{\rm yd}$$
$$M_{\rm Rd,4} = F_{\rm s1} z_{\rm s1} = A_{\rm s1} f_{\rm yd} z_{\rm s1}$$

Point 5 – pure (axial) tension

Axial tension (maximum normal load-bearing capacity in tension):

$$N_{\text{Rd},5} = F_{\text{s1}} + F_{\text{s2}} = (A_{\text{s1}} + A_{\text{s2}})f_{\text{yd}}$$
$$M_{\text{Rd},5} = F_{\text{s1}}z_{\text{s1}} - F_{\text{s2}}z_{\text{s2}} = (A_{\text{s1}}z_{\text{s1}} - A_{\text{s2}}z_{\text{s2}})f_{\text{yd}}$$

Interaction diagram

Using the calculated points 0 to 5, we create the ID.

Minimal eccentricity

When assessing the column, we also must consider minimal eccentricity

$$e_0 = \max\left(\frac{h_{col}}{30}; 20 \text{ mm}\right)$$

and calculate the **minimal bending moment**

$$M_0 = N_{\rm Rd,0} e_0$$

Minimal eccentricity

Using minimal bending moment, we restrict the ID (pure compression can never occur).

Column assessment

Using the ID, we can assess the column.

- If the point of internal forces lies outside the ID – column does not satisfy the assessment.
- If the point of internal forces lies inside the ID near its border – column does satisfy the assessment and is economic.
- If the point of internal forces lies inside the ID far from its border – column does satisfy the assessment but is not economic.

Next week

Next week

Next week

Next week we will focus on <u>reinforcement drawings</u> of the beam and column.

thank you for your attention

Recognitions

I thank **Assoc. Prof. Petr Bílý** for his original seminar presentation and other supporting materials from which this presentation was created.