

CM01 – Concrete and Masonry Structures 1 HW1 – Preliminary design of frame structure

Author: Jakub Holan Last update: 24.09.2024 22:32

Task 1

Task 1 – Frame structure

In Task 1, a frame structure will be designed.

Task 1 – Assignment

<u>Geometry:</u> R, a [m] – horizontal dimensions, h [m] – floor height, n – number of floors

<u>Materials:</u> Concrete – **concrete class** Steel B 500 B (f_{vk} = 500 MPa)

Loads: Other permanent load of typical floor Other permanent load of the roof Live load of typical floor Live load of the roof Self-weight of the slab $(g-g_0)_{\text{floor.k}} [kN/m^2]$ $(g-g_0)_{\text{roof.k}} [kN/m^2]$ $g_{\text{floor.k}} [kN/m^2]$ $g_{\text{roof.k}} = 0,75 \text{ kN/m}^2$ $g_{0,k}$ (calculate from the slab depth)

Another parameters:

S – Exposure class related to environmental conditions Z – Working life of the structure

Parameters in bold are individual parameters, which you can find on the course website.

Your individual parameters:

https://docs.google.com/spreadsheets/d/1uQluyyKEcG5jaZVLrsmm1ZRRNib_ow3MI wgZSEDgnW8/

Task 1 – Assignment goals

Our goal will be to:

- Design the dimensions of all elements.
- Do detailed calculation of 2D frame calculation of bending moments, shear and normal forces using FEM software.
- **Design steel reinforcement** in the members.
- Draw layout of the reinforcement.

Task 1 – part 1

Task 1 – part 1

In this seminar, we will **design dimensions of all structural members** – i.e.:

- depth of the slab,
- cross-sectional dimensions of the beam,
- cross-sectional dimensions of the **column**.

We will also do a **<u>sketch of the structure</u>**.

Task 1 – part 1 *Slab*

Depth of a one-way slab

We will design the slab depth using an *empirical-estimation* equation:

$$h_s = \frac{L_s}{30}$$
 to $\frac{L_s}{25}$.

The slab depth must be a multiple of 10 mm.

Cover depth *c*

Next, we **need to calculate the** *concrete cover* for the slab reinforcement – the process of calculating the concrete cover is presented in <u>this presentation</u>.

Slab

Effective depth of slab

Next, we need to calculate the *effective depth* of the slab:

For more information about the effective depth, see this presentation.

Assessment of the slab depth

Span-to-depth ratio should satisfy this condition (for deflection control):

 $\lambda = \frac{L_s}{d_s} \leq \kappa_{c1} \kappa_{c2} \kappa_{c3} \lambda_{d,tab}$ Value from the table. (For slabs assume the value for 0,5 % reinforcement ratio.) Effect of shape Effect of span Effect of reinforcement 1.0 1.0 1.2

 $\lambda_{d,tab}$ for outer span of the continuous beam/slab

	Concrete class										
ρ	12/15	12/15 16/20 20/25 25/30 30/37 40/50 50/									
0,5 %	19,0	20,5	22,1	24,1	26	33,5	41,5				
1,5 %	15,9	16,4	16,9	17,6	18	19,5	20,8				

For more information about the span-to-depth assessment, see this presentation.

Assessment of slab depth

When assessing the span-to-depth ratio, if the condition is not satisfied for your designed slab depth, **do not try to fully satisfy this condition***! Only adjust the slab depth designed using the empirical equation with respect to the results of the condition – i.e.:

- If the condition is **not satisfied by a little** (up to 20%), it is **not necessary to change the slab depth**.
- If the condition is **not satisfied by a large amount (over 20%)**, it is advisable to **increase the slab depth by 10 to 50 mm** (depending on how much the conditions was not satisfied).

Slab

Task 1 – part 1 Beam

Cross-sectional dimension of the beam

Empirical estimation of beam height and width:

$$h_B = rac{L_B}{15}$$
 to $rac{L_B}{12}$,
 $b_B = rac{h_B}{3}$ to $rac{2h_B}{3}$,

Also, the beam height must be at least 2.5x higher than the slab depth^{*} (i.e., $h_B \ge 2.5 h_s$).

The beam height and width must be **multiple of 50 mm**.

Load

After designing the beam dimensions, calculate the **design value of the linear load acting on the beam**. The beam is loaded by:

- self-weight of the beam,
- dead load from the slab,
- live load from the slab.

Preliminary check of the beam

To avoid troubles during detailed assessment later (e.g., the beam is too thin and cannot be reinforced enough), a preliminary check must be done.

First, we estimate theoretical maximum values of internal forces in the beam.

Preliminary check of bending

For the check of bending, we calculate *relative bending moment* and find corresponding relative height of compressed part of the beam in a table.

is utilized by the applied bending moment)

```
If \xi \in \langle 0.15; 0.4 \rangle, the design is ok.
If \xi < 0.15, you should decrease h_B and/or b_B.
If \xi > 0.4, you must increase h_B and/or b_B.
```

Relative height of compressed part of the beam (x/d)

μ	Θ	ζ	ζ		
0,010	0,0101	0,013	0,995		
0,020	0,0202	0,025	0,990		
0,030	0,0305	0,038	0,985		
0,040	0,0408	0,051	0,980		
0,050	-0,051	0,064	0,974		
0,060	0,0619	0,077	0,969		
0,070	0,0726	0,091	0,964		
0,080	0,0835	0,104	0,958		
0,090	0,0945	0,118	0,953		
0,100	0,1056	0,132	0,947		

Preliminary check of reinforcement ratio

Reinforcement ratio must satisfy the condition:

If $\rho_{s,rqd} > 0.04$, you must increase h_B and/or b_B .

Preliminary check of load-bearing capacity in shear

Maximal shear force must satisfy the condition of load-bearing capacity of "compression diagonals":

If the condition is not satisfied, you must increase h_B and/or b_B .

Preliminary check of deflection (span/depth ratio)

For the check of span/depth ratio, use the **same calculation procedure as for slab with the following differences**.

- Select a row in the table for $\lambda_{d,tab}$ (outer span) according to value of $\rho_{s,rqd}$ calculated above.
- If the condition is not satisfied, you must increase h_B to satisfy it.

Assessment of t	he slab	de	ept	th				
Span/depth ratio must satisfy this condition $\lambda = \frac{L_s}{d_s} \leq \kappa_{c1} \kappa_{c2} \kappa_{c3} \lambda_{d,tab}.$ Value from the assume the value for the val	•				conti	nuous	bean	n/slab
1.0 1.0 1.2	Concrete class							
	ρ	12/15	16/20	20/25	25/30	30/37	40/50	50/60
	0,5 %	19,0	20,5	22,1	24,1	26	33,5	41,5
	1,5 %	15,9	16,4	16,9	17,6	18	19,5	20,8
If the condition is satisfied, detailed calcula later detailed assessment.	ation of defl	ectio	ns n	nay k	oe or	nitte	d in	

Task 1 – part 1 *Column*

Cross-sectional dimension of the column

When designing column, the design load in its foot N_{Ed} must first be calculated.

from which, the condition for column cross-sectional area can be derived

$$A_{c} \geq \frac{N_{Ed}}{0.8f_{cd} + 0.02\sigma_{s}}$$

Design the column cross-section (width and height) in such a way that the condition above is satisfied. The dimensions must be multiples of 50 mm.

Task 1 – part 1 Sketch of the structure

Sketch of the structure

After designing the dimensions of all the elements, we have to make a <u>sketch of</u> <u>the structure</u>. The sketch must include:

- plan view of the structure (at least 2 fields in each direction),
- the edges of columns, beams and slabs,
- plan dimensions,
- cut of the structure perpendicular to the beams.

The sketch must show all designed dimensions of the elements.

Sketch of the structure

Task 1 – part 1 Examples of calculations used in the HW

Slab depth

Empirical estimation of slab depth for a slab with 6 m span:

$$h_s = \frac{L_s}{30}$$
 to $\frac{L_s}{25} = \frac{6000}{30}$ to $\frac{6000}{25} = 200$ mm to 240 mm $\rightarrow 200$ mm

Deflection control:

$$\frac{l}{d} = \frac{6000}{165} = 36.4 < 1.0 \cdot 1.0 \cdot 1.2 \cdot 33.5 = 40.2$$

Deflection control is satisfied -> h_s can be decreased.

Final design: $h_s = 190 \text{ mm}$

Effective slab depth:

$$d = 190 - 20 - \frac{10}{2} = 165 \text{ mm}$$

Slab loads

Loads on the floor slab for other permanent loads 0.5 kN/m^2 and variable load 3.0 kN/m^2 .

Slab lo	ad				
			charakteristic	$\gamma_{ m F}$	design
			kN/m^2		kN/m ²
Permai	nent				
	other permanent load		0,50		
	self weight	self weight $0,19\text{m} \cdot 25\text{kN/m}^3$			
	Total		$g_k = 5,25$	1,35	$g_d = 7,09$
Variab	le				
	(kategorie				
	C1)		$q_k = 3,00$	1,5	$q_d = 4,50$
Total			$q_k = 3,00$ $(g+q)_k = 8,25$		$q_d = 4,50$ $(g+q)_d = 11,59$

Roof loads

Loads on the roof slab for other permanent loads 2 kN/m^2 and inaccessible roof (0.75 kN/m²).

Roof loa	ad				
			charakteristic	$\gamma_{ m F}$	design
			kN/m ²		kN/m ²
Perman	ent				
	other permanent load		2,00		
	self weight	$0,19m \cdot 25kN/m^3$	4,75		
	Total		$g_k = 6,75$	1,35	$g_d = 9,11$
Variabl	e				
	(kategorie C1)		$q_k = 0,75$	1,5	$q_d = 1,125$
Total			$ \begin{array}{c c} q_k = 0,75 \\ (g+q)_k = 7,5 \end{array} $		$\frac{q_d = 1,125}{(g+q)_d = 10,24}$

Beam dimensions

Empirical design of beam height for a beam with 7 m span:

$$h_B = \frac{L_B}{15}$$
 to $\frac{L_B}{12} = \frac{7000}{15}$ to $\frac{7000}{12} = 467$ mm to 538 mm $\rightarrow h_B = 500$ mm.

Empirical design of beam width for a beam with 500 mm height:

$$b_B = \frac{h_B}{3}$$
 to $\frac{2h_B}{3} = \frac{500}{3}$ to $\frac{1000}{3} = 167$ mm to 333 mm $\rightarrow h_B = 250$ mm.

Tributing area or a column

When determining the point load acting on column from a single floor, we must assign all of the loads inside the <u>tributing area</u> to the column.

Loading of a column

Point load for the internal column (column dimensions estimated as $300 \text{ mm} \times 300 \text{ mm}$ and column height is 3.5 m) in a 6 floor structure.

	Point load of a column									
Load type	Load name	f _{a,d}	tributing area	te-a	tributing length	F _{1,d}	number of members	Fd		
-	-	kN/m ²	m²	kN/m	m	kN	pcs	kN		
AREA LOADS (fa)	floor slab	11.59	39	-	-	452.0	5	2260.1		
AR LOA	roof slab	10.24	39	-	-	399.4	1	399.4		
LINEA R LOADS (fiin)	beam self weight	-	-	(0.5-0.19)·0.25·25·1.35 = 2.62	7	18.34	6	110.0		
N 1 70 5	column self weight	-	-	0.3·0.3·25·1.35 = 3.04	3.5	10.6	6	63.8		
SUM							F _d =	2833.3		

Design of column dimensions

From the centric load condition

 $N_{Ed} = 0.8A_c \cdot f_{cd} + A_s \sigma_s$

 $2.833 \text{ MN} = 0.8A_c \cdot 20 \text{ MPa} + (0.02A_c) \cdot 400 \text{ MPa}$

minimal cross-sectional area is derived

2.833 MN = $24A_c$ $A_{c,min} = 0.118 \text{ m}^2$

 \rightarrow column **350 mm** \times **350 mm** (A_c = 122 500 mm²).

Next week

Next week

Next week we will focus on detailed calculation of internal forces using FEM software.

Are you able to use any Finite Element Analysis software?

If not, apply for <u>student license</u> for the SCIA Engineer software. When applying, use your school student email (e.g., "name.surname@estp.fr").

thank you for your attention