CM01 - Concrete and Masonry Structures 1 HW1 - Preliminary design of frame structure

Task 1

Task 1 - Frame structure

In Task 1, a frame structure will be designed.

Task 1 - Assignment

Geometry: $\boldsymbol{R}, \boldsymbol{a}[\mathrm{m}]$ - horizontal dimensions, $\boldsymbol{h}[\mathrm{m}]$ - floor height, \boldsymbol{n} - number of floors
$\begin{array}{ll}\text { Materials: } & \text { Concrete - concrete class } \\ & \text { Steel B } 500 \mathrm{~B}\left(\mathrm{f}_{\text {vk }}=500 \mathrm{MPa}\right)\end{array}$
Loads:
Other permanent load of typical floor
Other permanent load of the roof Live load of typical floor Live load of the roof Self-weight of the slab

```
(g-g}\mp@subsup{)}{\mathrm{ #loor,k}}{[kN/\mp@subsup{m}{}{2}]
(g-g}\mp@subsup{g}{\mathrm{ roofk }}{}[\textrm{kN}/\mp@subsup{\textrm{m}}{}{2}
q|oor.k}[\textrm{kN}/\mp@subsup{\textrm{m}}{}{2}
q}\mp@subsup{q}{\mathrm{ rofts }}{}=0,75\textrm{kN}/\mp@subsup{\textrm{m}}{}{2
go,k (calculate from the slab depth)
```


Another parameters: $\quad \boldsymbol{S}$ - Exposure class related to environmental conditions

 \boldsymbol{Z} - Working life of the structureParameters in bold are individual parameters, which you can find on the course website.

[^0]

Task 1 - Assignment goals

Our goal will be to:

- Design the dimensions of all elements.
- Do detailed calculation of 2D frame - calculation of bending moments, shear and normal forces using FEM software.
- Design steel reinforcement in the members.
- Draw layout of the reinforcement.

Task 1 - part 1

Task 1 - part 1

In this seminar, we will design dimensions of all structural members - i.e.:

- depth of the slab,
- cross-sectional dimensions of the beam,
- cross-sectional dimensions of the column.

We will also do a sketch of the structure.

Task 1 - part 1 Slab

Depth of a one-way slab

Empirical estimation of slab depth:

$$
h_{s}=\frac{L_{s}}{30} \text { to } \frac{L_{s}}{25} .
$$

The slab depth must be multiple of 10 mm .

Cover depth c

Concrete cover for reinforcement is calculated using the equation:

$$
c \geq c_{\min }+\Delta c_{\text {dev }}
$$

where

$$
\begin{aligned}
& c_{\min }=\max \left(c_{\min , b}, c_{\text {min }, \text { dur }}, 10 \mathrm{~mm}\right) \\
& \Delta c_{d e v}=10 \mathrm{~mm}
\end{aligned}
$$

$c_{\text {min,b }}$ is the cover depth necessary for good mechanical bond between steel and concrete, and it is equal to diameter of steel bars ($c_{\text {min, } b}=10 \mathrm{~mm}$).
$c_{\text {min,dur }}$ is the cover depth necessary for good resistance to unfavourable effects of the environment, and it is obtained using the following table.

Cover depth $c_{\text {min,dur }}$

Step 1: Determine structure class (default is S 4).

Structural class								
Criterion	Exposure class related to environmental conditions							
	$\times 1$	XC1	XC2	XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3
Working life 80 years	increase class by 1							
Working life 100 years	increase class by 2							
Concrete class	decrease class by 1 if concrete class is at least:							
	C20/25	C25/30	C30/37	C35/45	C40/50	C40/50	C40/50	C45/55
Member with slab geometry	decrease class by 1							
Special quality control of concrete	decrease class by 1							

Cover depth $c_{\text {min }}$ dur

Step 2: Determine cover depth.

Values of $\boldsymbol{c}_{\text {min,dur }}$ [mm]							
Structural class	Exposure class related to environmental conditions						
	$\times 0$	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3
S1	10	10	10	15	20	25	30
S2	10	10	15	20	25	30	35
S3	10	10	20	25	30	35	40
54 (for 50 years)	10	15	25	30	35	40	45
S5	15	20	30	35	40	45	50
S6	20	25	35	40	45	50	55

Cover depth $c_{\text {min }, d u r}$

You can check your calculation using this interactive tool.

Effective depth of slab

Calculation of slab effective depth:

$$
d_{s}=h_{s}-c-\frac{\varnothing}{2} .
$$

Assessment of the slab depth

Span/depth ratio must satisfy this condition (for deflection control):

If the condition is satisfied, detailed calculation of deflections may be omitted in later detailed assessment.

Assessment of slab depth

Usually, the slab is uneconomical if the span/depth condition is satisfied. Therefore, do not try to satisfy this condition! Only adjust the empirical design with respect to the results of the condition.

If the condition is not satisfied by a little (up to 20\%), it is not necessary to change the slab depth.

If the condition is not satisfied by a large amount (over 20\%), it is advisable to increase the slab depth by $\mathbf{1 0}$ to $\mathbf{5 0} \mathbf{~ m m}$ (depending on how much the conditions was not satisfied).

Task 1 - part 1
 Beam

Cross-sectional dimension of the beam

Empirical estimation of beam height and width:

$$
\begin{aligned}
& h_{B}=\frac{L_{B}}{15} \text { to } \frac{L_{B}}{12} \\
& b_{B}=\frac{h_{B}}{3} \text { to } \frac{2 h_{B}}{3}
\end{aligned}
$$

To reach sufficient stiffness of the beam, the following must be true:

$$
h_{B} \geq 2.5 h_{s}
$$

The beam height and width must be multiple of 50 mm .

Preliminary check of the beam

To avoid troubles during detailed assessment later (e.g., the beam is too thin and cannot be reinforced enough), a preliminary check must be done.

First, we estimate theoretical maximum values of internal forces in the beam.

Preliminary check of bending

For the check of bending, we calculate relative bending moment and find corresponding relative height of compressed part of the beam in a table.
 (assume 16 to 22 mm diameter of rebars)
Relative bending moment

Relative height of compressed part of the beam (x / d)

μ	ω	ξ	ζ
0,010	0,0101	0,013	0,995
0,020	0,0202	0,025	0,990
0,030	0,0305	0,038	0,985
0,040	0,0408	0,051	0,980
0,050	0,054	0,064	0,974
0,060	0,0619	0,077	0,969
0,070	0,0726	0,091	0,964
0,080	0,0835	0,104	0,958
0,090	0,0945	0,118	0,953
0,100	0,1056	0,132	0,947

If $\xi \in\langle 0.15 ; 0.4\rangle$, the design is ok.
If $\xi<0.15$, you should decrease h_{B} and/or b_{B}.
If $\xi>0.4$, you must increase $\boldsymbol{h}_{\boldsymbol{B}}$ and/or $\boldsymbol{b}_{\boldsymbol{B}}$.
(a factor expressing to what extent the beam
is utilized by the applied bending moment)

Preliminary check of reinforcement ratio

Reinforcement ratio must satisfy the condition:

$$
O=\frac{A_{\mathrm{s}, \mathrm{rqd}}}{M_{\mathrm{Ed}, \text { max }}}=\xrightarrow{\zeta d_{\mathrm{B}} f_{\mathrm{yd}}} \quad \begin{gathered}
\text { Relative value of lever arm } \\
\text { of internal forces }(z / \mathrm{d})- \\
\text { see table. }
\end{gathered}
$$

Required
reinforcement ratio

If $\rho_{s, r q d}>0.04$, you must increase h_{B} and/or b_{B}.

Preliminary check of load-bearing capacity in shear

Maximal shear force must satisfy the condition of load-bearing capacity of "compression diagonals":

If the condition is not satisfied, you must increase $\boldsymbol{h}_{\boldsymbol{B}}$ and/or \boldsymbol{b}_{B}.

Preliminary check of deflection (span/depth ratio)

For the check of span/depth ratio, use the same calculation procedure as for slab with the following differences.

- Select a row in the table for $\lambda_{d, t a b}$ (outer span) according to value of $\rho_{s, r q d}$ calculated above.
- If the condition is not satisfied, you must increase $\boldsymbol{h}_{\boldsymbol{B}}$.

Task 1 - part 1
Column

Cross-sectional dimension of the column

When designing column, the design load in its foot $N_{E d}$ must first be calculated.
The design load must satisfy the centric-load condition

$$
\underset{\begin{array}{c}
\text { Area of the cross- } \\
\text { section }\left(A_{c}=b_{c} h_{c}\right)
\end{array}}{\mathrm{N}_{\mathrm{Rd}}=0.8} \mathrm{~A}_{\mathrm{c}} f_{\mathrm{cd}}+\underset{\substack{\text { Reinforcement area } \\
\left.\text { (assume as } 0.02 \mathrm{~A}_{\mathrm{c}}\right)}}{\mathrm{A}_{\mathrm{s}} \sigma_{\mathrm{s}} \geq \mathrm{N}_{\mathrm{Ed}}} \xrightarrow[\substack{\text { Reinforcement stress } \\
\text { (assume as 400 MPa) }}]{ }
$$

from which, the condition for column cross-sectional area can be derived

$$
\mathrm{A}_{\mathrm{c}} \geq \frac{\mathrm{N}_{\mathrm{Ed}}}{0.8 f_{\mathrm{cd}}+0.02 \sigma_{\mathrm{s}}}
$$

Design the column cross-section (width and height) in such a way that the condition above is satisfied. The dimensions must be multiples of 50 mm .

Task 1 - part 1

Sketch of the structure

Sketch of the structure

After designing the dimensions of all the elements, we have to make a sketch of the structure. The sketch must include:

- plan view of the structure (at least 2 fields in each direction),
- the edges of columns, beams and slabs,
- plan dimensions,
- cut of the structure perpendicular to the beams.

The sketch must show all designed dimensions of the elements.

Sketch of the structure

Task 1 - part 1

Examples of calculations used in the HW

Slab depth

Empirical estimation of slab depth for a slab with 6 m span:

$$
h_{s}=\frac{L_{s}}{30} \text { to } \frac{L_{s}}{25}=\frac{6000}{30} \text { to } \frac{6000}{25}=200 \mathrm{~mm} \text { to } 240 \mathrm{~mm} \rightarrow 200 \mathrm{~mm}
$$

Deflection control:

$$
\frac{l}{d}=\frac{6000}{165}=36.4<1.0 \cdot 1.0 \cdot 1.2 \cdot 33.5=40.2
$$

Deflection control is satisfied $\rightarrow h_{s}$ can be decreased.
Final design: $h_{s}=190 \mathrm{~mm}$
Effective slab depth:

$$
d=190-20-\frac{10}{2}=165 \mathrm{~mm}
$$

Slab loads

Loads on the floor slab for other permanent loads $0.5 \mathrm{kN} / \mathrm{m}^{2}$ and variable load $3.0 \mathrm{kN} / \mathrm{m}^{2}$.

Slab load				

Roof loads

Loads on the roof slab for other permanent loads $2 \mathrm{kN} / \mathrm{m}^{2}$ and inaccessible roof ($0.75 \mathrm{kN} / \mathrm{m}^{2}$).

Roof load					
			charakteristic	γ_{F}	design
			$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$
Permanent					
	other permanent load		2,00		
	self weight	$0,19 \mathrm{~m} .25 \mathrm{kN} / \mathrm{m}^{3}$	4,75		
	Total		$g_{k}=6,75$	1,35	$g_{d}=9,11$
Variable					
	(kategorie C1)		$q_{k}=0,75$	1,5	$q_{d}=1,125$
Total			$(g+q)_{k}=7,5$		$(g+q)_{d}=10,24$

Beam dimensions

Empirical design of beam height for a beam with 7 m span:

$$
h_{B}=\frac{L_{B}}{15} \text { to } \frac{L_{B}}{12}=\frac{7000}{15} \text { to } \frac{7000}{12}=467 \mathrm{~mm} \text { to } 538 \mathrm{~mm} \rightarrow h_{B}=500 \mathrm{~mm} .
$$

Empirical design of beam width for a beam with 500 mm height:

$$
b_{B}=\frac{h_{B}}{3} \text { to } \frac{2 h_{B}}{3}=\frac{500}{3} \text { to } \frac{1000}{3}=167 \mathrm{~mm} \text { to } 333 \mathrm{~mm} \rightarrow h_{B}=250 \mathrm{~mm} .
$$

Tributing area or a column

When determining the point load acting on column from a single floor, we must assign all of the loads inside the tributing area to the column.

Loading of a column

Point load for the internal column (column dimensions estimated as $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ and column height is 3.5 m) in a 6 floor structure.

Point load of a column							
Load type\quad Load name	$f_{a, d}$	tributing area	$\mathrm{f}_{\text {lin }, \text { d }}$	tributing length	$\mathrm{F}_{1, \mathrm{~d}}$	number of members	F_{d}
-	$\mathrm{kN} / \mathrm{m}^{2}$	m^{2}	kN/m	m	kN	pcs	kN
\&	11.59	39	-	-	452.0	5	2260.1
¢ $=$ roof slab	10.24	39	-	-	399.4	1	399.4
发 $\underbrace{}_{\text {c }}$	-	-	$(0.5-0.19) \cdot 0.25 \cdot 25 \cdot 1.35=2.62$	7	18.34	6	110.0
\geq ¢	-	-	$0.3 \cdot 0.3 \cdot 25 \cdot 1.35=\mathbf{3 . 0 4}$	3.5	10.6	6	63.8
SUM						$\mathrm{F}_{\mathrm{d}}=$	2833.3

Design of column dimensions

From the centric load condition

$$
N_{E d}=0.8 A_{c} \cdot f_{c d}+A_{s} \sigma_{s}
$$

$$
2.833 \mathrm{MN}=0.8 A_{c} \cdot 20 \mathrm{MPa}+\left(0.02 A_{c}\right) \cdot 400 \mathrm{MPa}
$$

minimal cross-sectional area is derived
$2.833 \mathrm{MN}=24 A_{c}$
$A_{c, \text { min }}=0.118 \mathrm{~m}^{2}$
\rightarrow column $\mathbf{3 5 0 ~ m m} \times \mathbf{3 5 0} \mathbf{~ m m}\left(\mathrm{A}_{\mathrm{c}}=122500 \mathrm{~mm}^{2}\right)$.

Next week

Next week

Next week we will focus on detailed calculation of internal forces using FEM software.
Are you able to use any Finite Element Analysis software?
If not, apply for student license for the SCIA Engineer software.
When applying, use your school student email (e.g., "name.surname@estp.fr").

thank you for your attention

[^0]: Your individual parameters:
 https://docs.google.com/spreadsheets/d/1uQluyyKEcG5jaZVLrsmm1ZRRNib ow3MI wgZSEDgnW8/

