4th task: RC stiffening walls in the structure from 3rd task in longitudinal direction


## Introduction

- Horizontal loads (wind, earthquake etc.) have to be transferred to the foundation
- Structure supported just by columns is flexible => high deflections => additional bracing needed in multi-storey buildings



## Introduction

- Stiffness of an element strongly depends on moment of inertia of its cross section

$$
I=\frac{1}{12} b h^{3}
$$

$=>300 \times 2000 \mathrm{~mm}$ wall is 297times stiffer than $300 \times 300 \mathrm{~mm}$ column
=> We use walls or cores to increase horizontal stiffness of structures (to brace them)

## Introduction

- The same structure with stiffening walls:

- Horizontal deflection 5.6 mm instead of 87.8 mm


## Our goal will be to

- Calculate wind loads
- Calculate vertical loads
- Design geometry of stiffening walls (number, length, position)
- Design reinforcement of stiffening walls
- Draw a sketch of reinforcement


## Load combinations

- We have to calculate stresses in the foot of a stiffening wall from three load combinations:
- C1: Characteristic wind load + minimum vertical load
- C2: Design wind load + maximum vertical load
- C3: Design wind load + minimum vertical load
- We will use C 1 for the design of geometry, C2 and C3 for the design of reinforcement
- In C1 and C2, we have to avoid tension in the foot of the wall
- In C3, tension is allowed


## Wind loads <br> - Characteristic value of wind load $w_{k}$ :



## Wind loads

- Basic wind velocity - based on wind load area



## Wind loads

- Exposure factor
- Terrain category - III (suburb) or IV (dowtown)
- z - in our case, the height of the building (use the number of floors and height of one floor from the 1st task)



## Wind loads

- Design value of wind load $w_{\mathrm{d}}$ in $\mathrm{kN} / \mathrm{m}^{2}$ (load per $1 \mathrm{~m}^{2}$ of the facade):

Partial factor, 1.5

$$
w_{\mathrm{d}}=\gamma_{\mathrm{Q}} \overparen{w_{\mathrm{k}}}
$$

- For further calculations, we need linear load in $\mathrm{kN} / \mathrm{m}-w_{\mathrm{k}, \text { lin }}$ and $w_{\mathrm{d} \text {, lin }}$ (load per 1 m of stiffening walls)


Model of stiffening walls = cantilever loaded by wind load


## Vertical loads

- We have to estimate the geometry of the stiffening walls
- 1st estimate: 2 walls, length = 1 span, thickness $=200$ to 250 mm



## Vertical loads

- Minimum vertical load: characteristic load from the self-weigth of RC structure in tributary area

- $n$ floors $=>$ include the load from $n$ slabs and $n$ walls. Consider all the floors to be the same. Take slab loads from 3rd task.
- Calculate reaction $\mathrm{R}_{\min }[\mathrm{kN}]$


## Vertical loads

- Maximum vertical load: design load from the self-weigth of RC structure, other permanent load and live load in tributary area

- $n$ floors => include the load from $n$ slabs and $n$ walls
- Calculate reaction $\mathrm{R}_{\max }[\mathrm{kN}]$


## Design of geometry of the walls

- We have estimated the geometry, now we will check it. We will use comb. C1.
- Total bending moment from the characteristic wind load in the foot of all stiffening walls is:

$$
M_{\mathrm{w}}=\frac{1}{2} w_{\mathrm{k}, \text { lin }} H^{2}
$$

- If all the walls are indentical, stress from the characteristic wind load in the foot one stiffening wall is:


Number of stiffening walls, 2 in our case

Section modulus of one wall, $\mathrm{W}=1 / 6 * \mathrm{t}^{*} \mathrm{~L}^{2}$
( $t$ - thickness of the wall, $L$ - length of the wall)

## Design of geometry of the walls

- If the walls are NOT identical, then the stress in wall $A$ is:

- Simply: The moment is divided according to moments of inertia. Remember it for the exam!


## Design of geometry of the walls

- Stress from the minimum vertical load in the foot of one stiffening wall is:

$$
\sigma_{\mathrm{N}}=\frac{R_{\min }}{A} \longleftarrow \begin{gathered}
\text { Cross-sectional area of one wall, } \mathrm{A}=\mathrm{t}^{*} \mathrm{~L} \\
\text { (NOT the tributary area!!!) }
\end{gathered}
$$

- Total stress in the foot of one stiffening wall:

- We have to avoid tension in C1. If you receive tension for your estimated geometry, you have to change the design.


## Design of geometry of the walls

- You can:
- Increase number of stiffening walls - not efficient (small vertical load in outer walls)
- Increase thickness of stiffening walls - not efficient (stress from verical load decreased)
- Increase the length of stiffening walls


Recalculate the stresses for new geometry

## Design of reinforcement

- Calculate total stresses in the foot of stiffening walls in combinations C2 and C3

- In C2, we have to avoid tension (should be OK if there was no tension in C1)
- In C3, tension is allowed if tensile reinforcement is provided


## Basic reinforcement

- In 1st step, design the reinforcement in the whole wall just based on detailing rules
- Vertical reinforcement: Reacied area of vericial


Spacing of rebars $\longrightarrow s_{\mathrm{v}} \leq \min (3 t ; 400 \mathrm{~mm})$

- Horizontal reinforcement:

$$
\begin{aligned}
a_{\mathrm{s}, \mathrm{~h}} & \geq \max \left(0.25 a_{\mathrm{s}, \mathrm{v}} ; 0.001 a_{\mathrm{c}}\right) \\
s_{\mathrm{h}} & \leq 400 \mathrm{~mm}
\end{aligned}
$$

- Example (give your design in the same way):

Vertical: Ø6 per 250 mm on both surfaces ( $a_{\mathrm{s}, \mathrm{v}}=2 * 113 \mathrm{~mm}^{2} / \mathrm{m}$ ) Horizontal: $\emptyset 6$ per 400 mm on both surfaces $\left(\mathrm{a}_{\mathrm{s}, \mathrm{h}}=2 * 70 \mathrm{~mm}^{2} / \mathrm{m}\right)$

## Compressed reinforcement

- Use the total stress from C2, take average stress in 1 m strip on the edge and calculate N :

- Required area of vertical reinforcement is:

$$
a_{\mathrm{s}, \mathrm{seq}, \mathrm{~V}}=\frac{N-0,8 a_{\mathrm{c}} f_{\mathrm{cd}}}{\sigma_{\mathrm{s}}} 400 \mathrm{Mpa}
$$

- If this area is more than the area according to detailing rules, use this vertical reinforcement on the edge of the wall and adjust the horizontal reinforcement


## Tensile reinforcement

- If you received tension in C3, take average stress in 1 m on the edge and calculate N (as in the previous case)

- Required area of vertical reinforcement is:

$$
a_{\mathrm{s}, \mathrm{req}, \mathrm{v}}=\frac{N}{f_{\mathrm{yd}}}
$$

- If this area is more than the area according to detailing rules and more that the area of compressed reinforcement, use this vertical reinforcement on the edge of the wall and adjust the horizontal reinforcement


## Sketch of reinforcement



