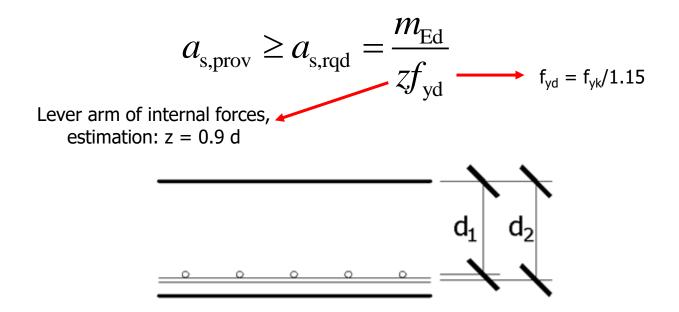

3rd task:

Two-way slab supported by columns (flat slab)

Reinforcement of the slab

- Design of bending reinforcement
- Drawing of bending reinforcement
- Detailed check of punching
- Design of punching reinforcement (if necessary)
- Sketch of punching reinforcement

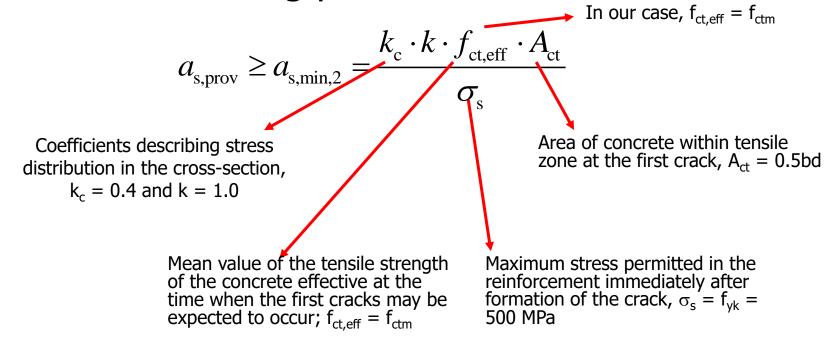

Design of bending reinforcement

- Generally, it is the same as for beams
- Do the calculation for the moments calculated in 7th seminar
- Do the calculation in a table like this:

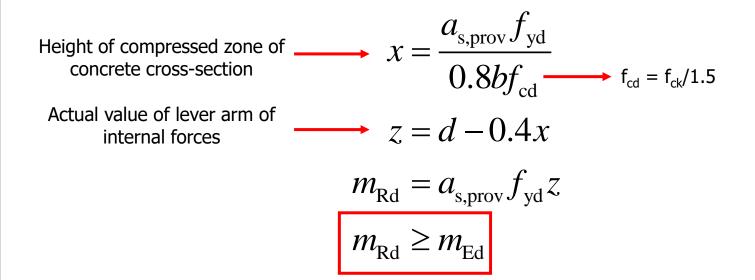
Design and check of bending reinforcement of the slab																	
	Cross-section	Strip	Design								Check						
Panel			m _{Ed}	d	z	a _{s,rqd}	a _{s,min}	Design	a _{s,prov}	х	ξ	z	m _{Rd}	m _{Rd} > m _{Ed}	ξ<0,45	spacing	
			[kNm/m]	mm	mm	[mm ²]	[mm ²]		[mm ²]	[mm]		[mm]	[kNm/m]			of bars	
C _o	1 (left support)	no division	31,02	169	152	469	220	Ø12 á 250 mm	452	18,42	0,109	162	31,76	OK	OK	OK	
	2 (midspan)	Column	34,46	169	152	521	220	Ø12 á 200 mm	566	23,07	0,137	160	39,32	OK	OK	OK	
		Middle	22,97	169	152	347	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK	
	3 (right support)	Column	60,31	169	152	912	220	Ø12 á 100 mm	1131	46,10	0,273	151	74,04	OK	OK	OK	
		Middle	20,10	169	152	304	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK	
C _{in}	1 (left support)	Column	70,08	169	152	1060	220	Ø12 á 100 mm	1131	46,10	0,273	151	74,04	OK	OK	OK	
		Middle	23,36	169	152	353	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK	
	2 (midspan)	Column	30,19	169	152	456	220	Ø12 á 250 mm	452	18,42	0,109	162	31,76		OK	OK	
		Middle	20,12	169	152	304	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK	
	3 (right support)	Column	70,08	169	152	1060	220	Ø12 á 100 mm	1131	46,10	0,273	151	74,04	OK	OK	OK	
		Middle	23,36	169	152	353	220		335	13,65	0,081	164	23,82	OK	OK	OK	
3,	1 (left support)	Column	36,14	156	140	592		Ø12 á 200 mm	566	23,07	0,147	147	36,36		OK	OK	
		Middle	12,65	156	140	207	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69		OK	OK	
	2 (midspan)	Column	29,78	156	140	488		Ø12 á 200 mm	566	23,07	0,147	147	36,36		OK	OK	
		Middle	10,69	156	140	175	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK	
	3 (right support)	Column	50,12	156	140	821		Ø12 á 100 mm	1131	46,10	0,294	138	68,14	OK	OK	OK	
		Middle	9,00	156	140	147	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69		OK	OK	
3 _{in}	1 (left support)	Column	56,62	156	140	927		Ø12 á 100 mm	1131	46,10	0,294	138	68,14	OK	OK	OK	
		Middle	13,35	156	140	219	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69		OK	OK	
	2 (midspan)	Column	24,39	156	140	400		Ø12 á 250 mm	452	18,42	0,117	149	29,41	OK	OK	OK	
		Middle	11,50	156	140	188	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK	
	3 (right support)	Column	56,62	156	140	927		Ø12 á 100 mm	1131	46,10	0,294	138	68,14	OK	OK	OK	
		Middle	13,35	156	140	219	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK	

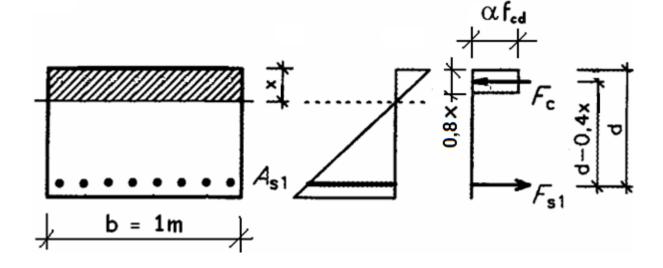
Design of bending reinforcement

Cross-sectional area of reinforcement:


- Two-way slab = two values of d!!!
- Use higher d in the direction of higher $m_{\rm Ed}$
- Use 8 14 mm bars
- Use cover depth from the 1st task

Minimum reinforcement


Brittle failure precaution:


$$a_{\rm s,prov} \geq a_{\rm s,min,1} = \max\left(0.26\frac{f_{\rm ctm}}{f_{\rm yk}}bd;0.0013bd\right)$$
 Mean tensile strength of concrete, see table Width of the slab, 1 m

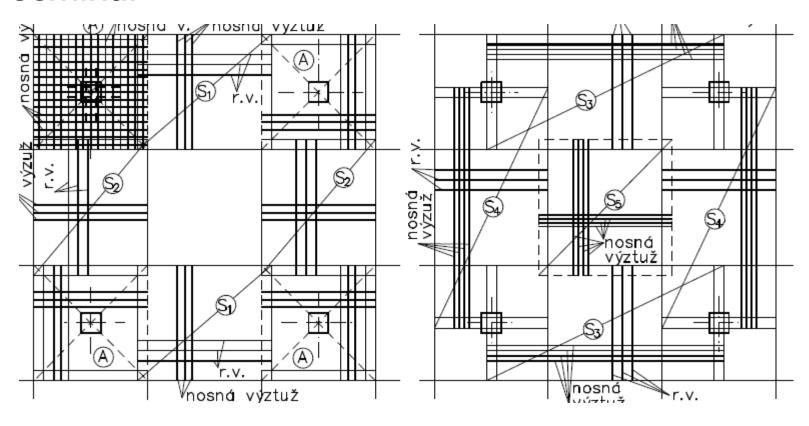
Excessive cracking precaution:

Check of the design

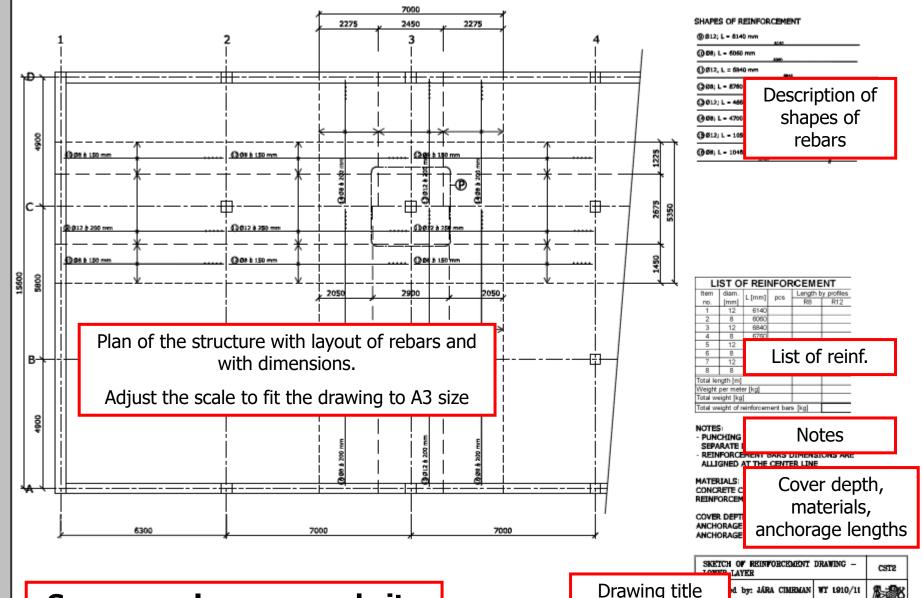
Detailing rules

• Relative height of compressed zone:

$$\xi = \frac{x}{d} \le 0.45$$

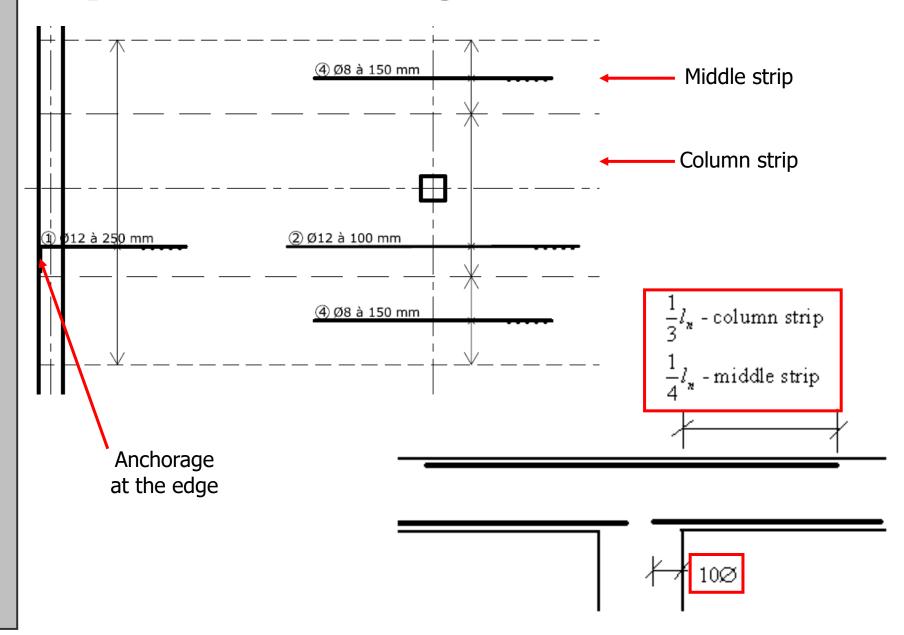

Spacing of rebars:

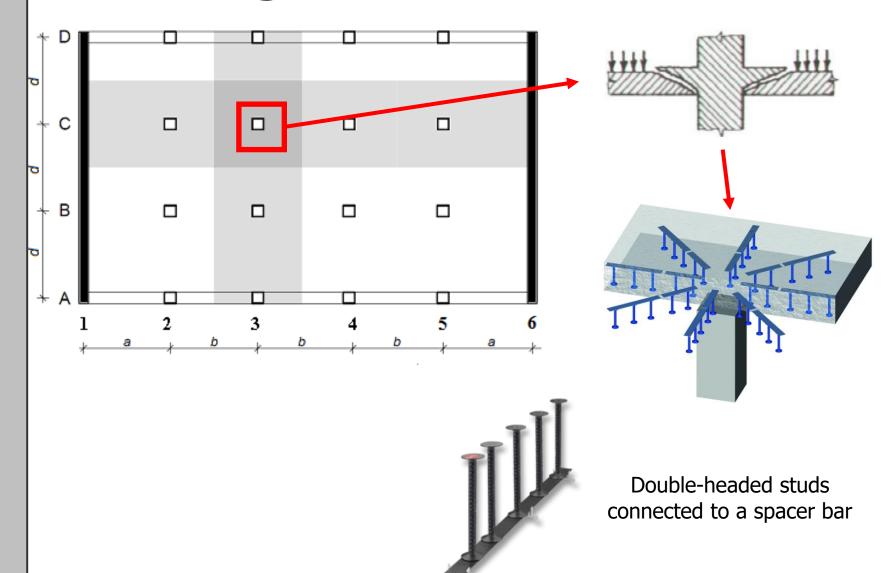
$$s \le \min(2h_{\rm S}; 250 \text{ mm})$$


- Recommendation: Spacing not less than 100 mm
- RULE: It is always better to use higher number of smaller bars than lower number of bigger bars (deflections, stress distribution...)

Drawing of bending reinforcement

- 1 drawing for upper reinforcement
- 1 drawing for lower reinforcement
- Calculation of anchorage length see 5th seminar


Drawing of bending reinforcement


Checked by: prof. KLOKNER

See example on my website

Layout of bending reinforcement

Punching in column C3

Detailed check of punching

- 3 steps
- Is the resistance of compressed concrete in the face of the column sufficient? Already checked in preliminary design.

$$v_{\rm Ed,max} \leq v_{\rm Rd,max}$$

• Is the slab able to carry the load without reinforcement?

$$v_{\rm Ed,1} \leq v_{\rm Rd,c}$$

• Is the designed reinforcement sufficient?

$$v_{\rm Ed,1} \le v_{\rm Rd,cs}$$

Resistance without reinforcement

$$v_{\rm Ed,1} = \frac{\beta V_{\rm Ed}}{u_1 d} \leq v_{\rm Rd,c} = \max \left[C_{\rm Rd,c} \cdot k \cdot \sqrt[3]{\left(100 \rho_l \cdot f_{\rm ck}\right)}; \quad 0,035 \sqrt{k^3 f_{\rm ck}} \right]$$
 Stress in control Punching shear Reinforcement ratio for Minimum value of $v_{\rm Rd,c}$

Stress in control perimeter u₁ - see resistance of a slab preliminary design

Punching shear without punching reinforcement

$$d = \frac{d_{\rm C} + d_3}{2}$$

If you used caps (steel flanged collars), use u₁ calculated with the cap Reinforcement ratio for tensile reinforcement

$$\rho_l = \sqrt{\rho_{lC} \cdot \rho_{l3}} \le 0.02$$

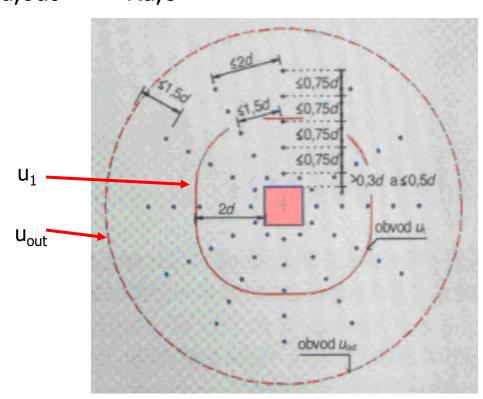
$$\rho_{lC} = \frac{a_{sC}}{1000d_{c}}, \, \rho_{l3} = \frac{a_{s3}}{1000d_{a}}$$

 a_{sC} and a_{s3} are cross-sectional areas of upper reinforcement per 1 m in belt C and belt 3 (in the distance of 3d from perimeter u_0)

called v_{\min}

Remaining coefficients – see preliminary design (7th seminar)

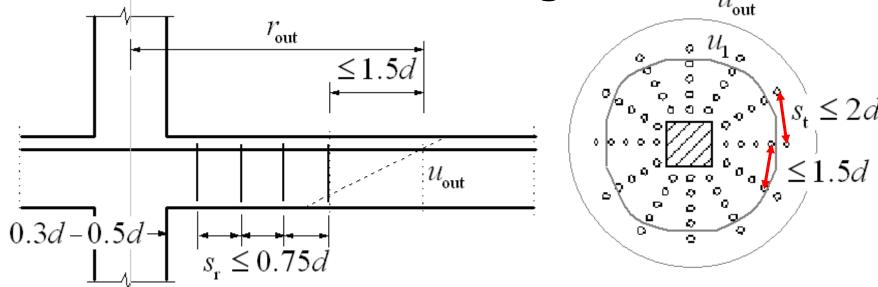
 $v_{\rm Ed,1} \le v_{\rm Rd,c} \odot$ No punching reinforcement needed


 $v_{\rm Ed,1} > v_{\rm Rd,c} \otimes$ Design of punching reinforcement

Design of punching reinforcement

• Control perimeter where the reinforcement is not necessary ($v_{Ed,out} = v_{Rd,c}$) and its radius:

$$u_{\text{out}} = \frac{\beta \, V_{\text{Ed}}}{v_{\text{Rd,c}} d}$$


$$r_{\text{out}} = \frac{u_{\text{out}}}{2\pi}$$

Layout of punching reinforcement

- First stud (0.3–0.5) d behind the face of column
- Last stud not more than 1.5*d* from u_{out}
- Spacing of intermediate studs $s_r \le 0.75d$
- Spacing of rails $s_t \le 2d$
- Spacing of rails in perimeter u₁ less than 1.5d

See example on my webpage

Design of punching reinforcement

Number of rails ("sun rays")

$$n \ge \max\left(\frac{2\pi(r_{\text{out}} - 1, 5d)}{2d}; \frac{u_1}{1, 5d}\right)$$

- Diameter of studs: 10 14 mm (up to 25 mm if necessary) => cross-sectional area of one stud $A_{sw,1}$
- Cross-sectional area of studs in one perimeter:

$$A_{sw} = n.A_{sw,1}$$

If you used caps (steel flanged collars), use u₁ calculated with the cap

Check of punching reinforcement

$$v_{\text{Ed},1} = \frac{\beta V_{\text{Ed}}}{u_1 d} \le v_{\text{Rd,cs}}$$

perimeter u₁

Stress in control Punching shear resistance of a slab with punching reinforcement

$$v_{\text{Rd,cs}} = 0,75v_{\text{Rd,c}} + 1,5\frac{d}{s_{\text{r}}}A_{\text{sw}}f_{\text{ywd,ef}}\frac{1}{u_{\text{l}}d}\sin\alpha \le k_{\text{max}}v_{\text{Rd,c}}$$

Punching shear resistance of a slab without punching reinforcement

Spacing of studs

Effective design strength of punching reinforcement

Angle between studs and slab, 90°

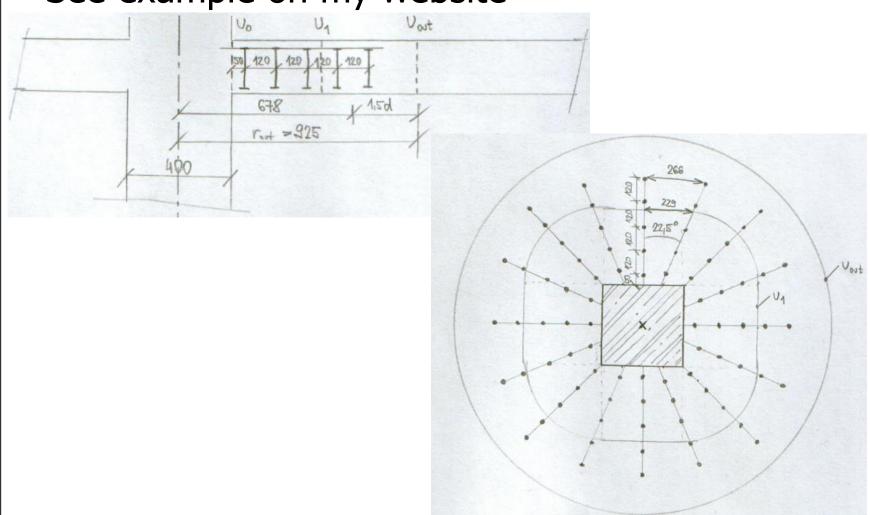
$$f_{ywd,ef} = 250 + 0.25d \le f_{ywd}$$

 $v_{\rm Ed,1} \le v_{\rm Rd,cs} \odot$ Checked

Design strength of reinforcement steel, ask the producer of studs or take 435 MPa

 $v_{\rm Ed,1} > v_{\rm Rd,cs}$ © Redesign: Decrease s_r or increase A_{sw 1}

Punching reinforcement ratio


$$\rho_{\mathrm{sw}} = 1, 5 \frac{A_{\mathrm{sw},1}}{s_{\mathrm{r}} s_{\mathrm{t}}} \geq \rho_{\mathrm{sw},\mathrm{min}} = 0, 08 \frac{\sqrt{f_{\mathrm{ck}}}}{f_{\mathrm{yk}}}$$
 Punching reinforcement ratio of your slab ratio

$$\rho_{\rm sw} \ge \rho_{\rm sw,min} \odot$$
 Checked

 $\rho_{\text{sw}} \ge \rho_{\text{sw,min}} \odot \text{ Checked}$ $\rho_{\text{sw}} < \rho_{\text{sw,min}} \odot \text{ Redesign: Decrease } s_{\text{r}} \text{ or increase } A_{\text{sw,1}}$

Sketch of punching reinforcement

- Plan and section in scale 1:20
- See example on my website

