

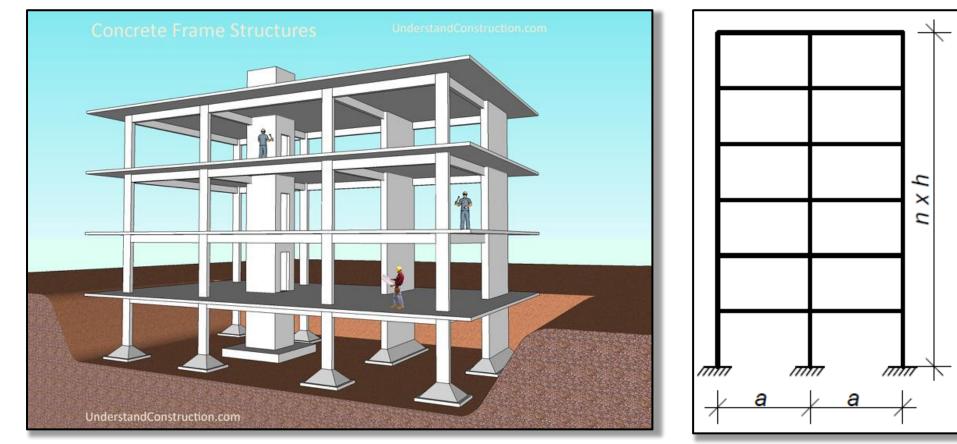
CM01 – Concrete and Masonry Structures 1 HW4 – Design of column reinforcement

Author: Jakub Holan Last update: 13.10.2022 20:51

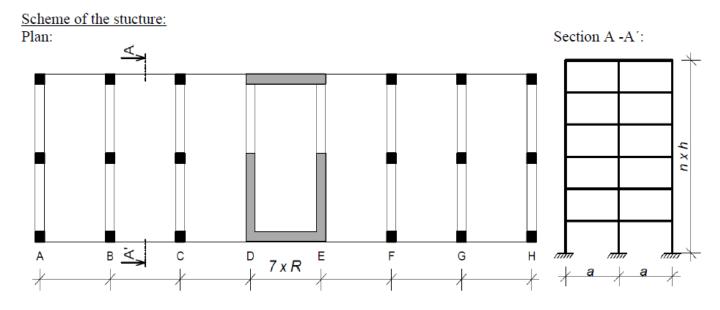
Task 1

Task 1 – Frame structure

In Task 1, frame structure will be designed.



Task 1 – Assignment



Individual parameters (parameters in bold you can find on teacher's website):

<u>Geometry:</u> R, a [m] – horizontal dimensions, h [m] – floor height, n – number of floors

<u>Materials:</u> Concrete – concrete class Steel B 500 B (f_{yk} = 500 MPa)

Loads:Other permanent load of typical floor $(g-g_0)_{floor,k}$ [kN/m²]Other permanent load of the roof $(g-g_0)_{roof,k}$ [kN/m²]Live load of typical floor $q_{floor,k}$ [kN/m²]Live load of the roof $q_{roof,k} = 0.75$ kN/m²Self-weight of the slab according to calculated depth

<u>Another parameters:</u> S – Exposure class related to environmental conditions Z – Working life of the structure

beton4life

Task 1 – Assignment goals

Our goal will be to:

- Design the dimensions of all elements.
- Do detailed calculation of 2D frame calculation of bending moments, shear and normal forces using FEM software.
- Design steel reinforcement in the 1st floor members:
 - beam,
 - column.
- Draw layout of the reinforcement.

Design of column reinforcement

Design of column reinforcement

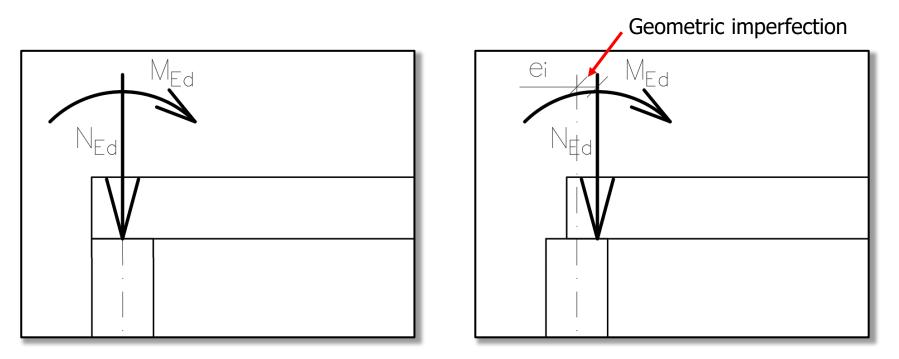
Using the maximal values of internal forces from the "envelope" of internal forces, we will design and assess **longitudinal reinforcement** of the column using these steps:

- 1) Calculate **geometric imperfections** and **design moments**.
- 2) Assess **slenderness** of the column.
- 3) **Design** reinforcement.
- 4) **Assess** the column with reinforcement.

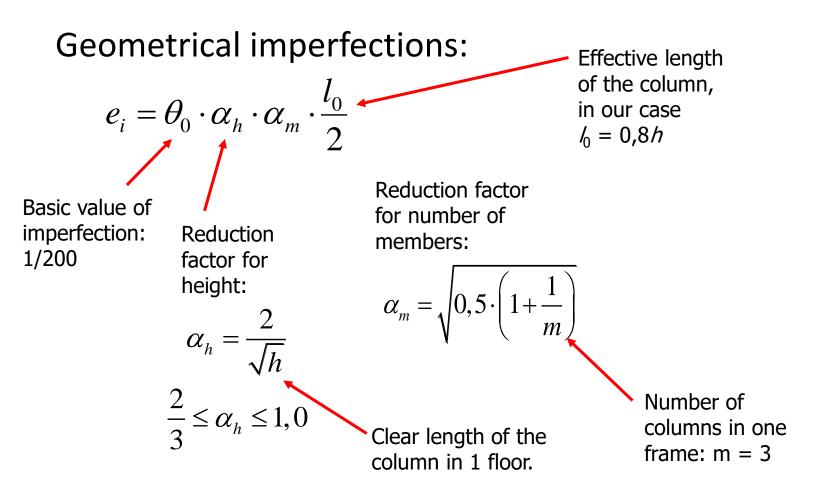
Geometrical imperfections and design moments

Geometrical imperfections

We calculated moments on ideal model of frame structure, but real structures are not perfect. Geometric imperfections cause additional bending moments.



Geometrical imperfections



Geometrical imperfections

Additional moment due to geometrical imperfection:

 $M_{imp} = N_{Ed} e_i$ Normal force in given cross-section (head or foot of column)

Design moments

Calculate bending moments with the effect of geometric imperfections $(M_{Ed,I})$ in the head and foot of the column for both combinations:

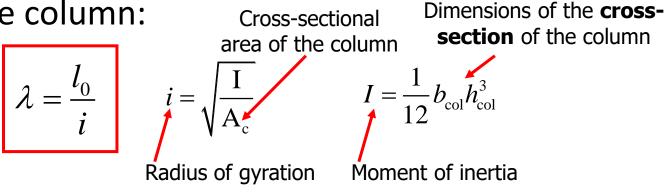
		Head of the column	Foot of the column	
	M _{imp}	8	8.3	
C01	M _{Ed}	7	-17	
	M _{Ed} + M _{imp}	15	-8.7	
	M _{Ed} - M _{imp}	-1	-25.3	
CO2	M _{Ed}	15	-11	
	M _{Ed} + M _{imp}	23	-2.7	
	M _{Ed} - M _{imp}	7	-19.3	

We will use these values later to check the load-bearing capacity.

We must check if the column is slender or massive using the condition:

$$\begin{array}{ll} \lambda \leq \lambda_{lim} \\ \text{where} \quad \lambda & \text{is the slenderness of the column,} \\ \lambda_{lim} & \text{is the limiting slenderness.} \end{array}$$

Slenderness of the column:



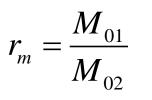
Limiting slenderness:

Effect of creep, Effect of reinforcement A = 0.7Final ratio, B = 1.1Effect of bending moments
Effect of bending moments
To be more than 75. $N = \frac{N_{Ed}}{A_c f_{cd}}$

Effect of bending moments

Effect of bending moments:

$$C=1,7-r_m$$



 M_{01} and M_{02} are bending moments in the head and foot of the column, where $|M_{02}| > |M_{01}|$. (Compare absolute values, but use values WITH the sign in the equation for r_m .)

		Head of the column	Foot of the column	M01	M02	r _m (M01/M02)
	M _{imp}	8	8.3	-	-	-
CO1	M _{Ed}	7	-17	-	-	-
	M _{Ed} + M _{imp}	15	-8.7	-8.7	15	-0.580
	M _{Ed} - M _{imp}	-1	-25.3	-1	-25.3	0.040
CO2	M _{Ed}	15	-11	-	-	-
	M _{Ed} + M _{imp}	23	-2.7	-2.7	23	-0.117
	M _{Ed} - M _{imp}	7	-19.3	7	-19.3	-0.363

Use the **highest** r_m in the check of slenderness.

Effect of bending moments

If the bending moments are caused predominantly by the imperfections (i.e., $M_{imp} > M_{Ed}$), we should always assume **C** = **0.7**.

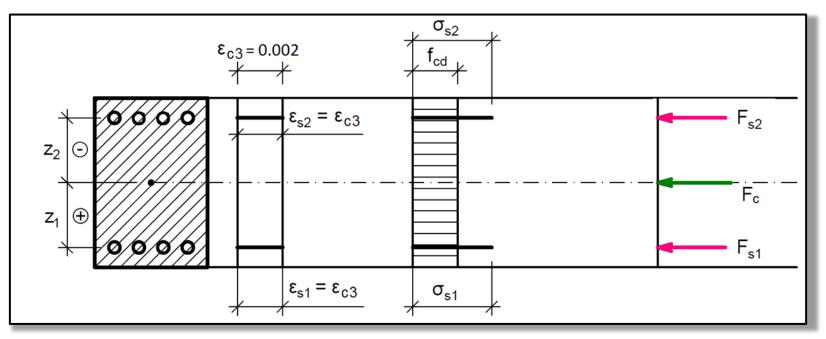
We must check if the column is slender or massive using the condition:

 $\begin{array}{ll} \lambda \leq \lambda_{lim} \\ \text{where} \quad \lambda & \text{is the slenderness of the column,} \\ \lambda_{lim} & \text{is the limiting slenderness.} \end{array}$

If $\lambda \leq \lambda_{lim}$, the column is robust. If $\lambda > \lambda_{lim}$, the column is slender.

If your column is slender, increase bending moments by approximately 30 % (simplification).

When designing the reinforcement, we use an estimation based on the the presumption of pure compression (uniformly distributed compression over the whole cross-section).



We employ the limit-force assumption which means *"assume that the*" load-bearing capacity will be equal to the acting normal force":

$$N_{Rd} = N_{Ed}$$

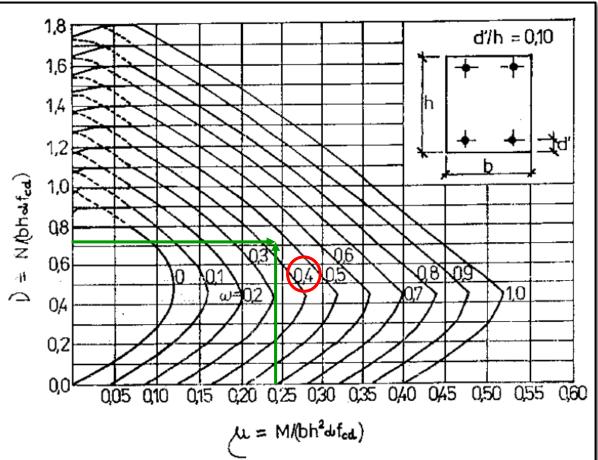
$$0.8A_c f_{cf} + A_s f_{yd} = N_{Ed}$$

From this equation, we can derive equation for required reinforcement:

$$A_{\rm s,req,1} = \frac{N_{\rm Ed} - 0,8A_{\rm c}f_{\rm cd}}{\sigma_{\rm s}} \qquad \begin{array}{l} \text{Stress in reinforcement in pure compression:} \\ \sigma_{\rm s} = 400 \text{ MPa} & \text{if } f_{\rm yd} \ge 400 \text{ MPa} \\ \sigma_{\rm s} = f_{\rm yd} & \text{if } f_{\rm yd} < 400 \text{ MPa} \end{array}$$

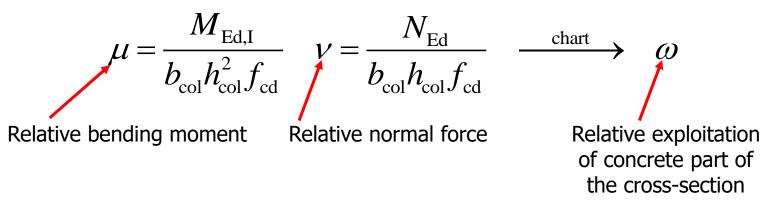
If the equation gives As, req, 1 < 0, minimum reinforcement of 4 ø12 mm should be designed. heton4life

For the design, you can also employ a more complex but more precise method using a graph for design of symmetrical reinforcement.



beton4life

For the design, you can also employ a more complex but more precise method using a graph for design of symmetrical reinforcement.



Required reinforcement area:

$$\rightarrow A_{\rm s,req,2} = \frac{\omega A_{\rm c} f_{\rm cd}}{f_{\rm yd}}$$

Design number and diameter of bars:

Example: **DESIGN**: $6x \ Ø16 \ (A_{s,prov} = 1206 \ mm^2)$

The design must satisfy:

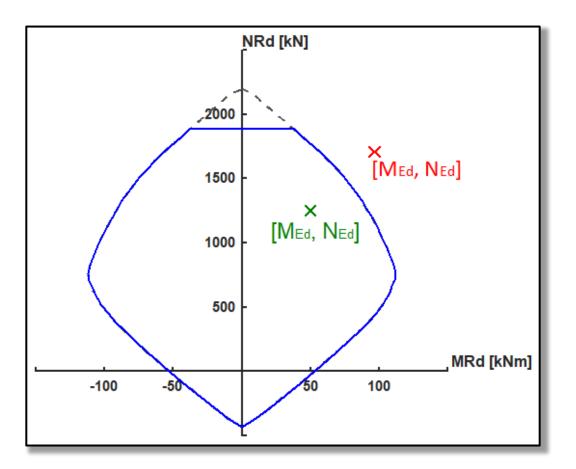
 $A_{s,prov} \geq A_{s,req}$.

Also, the cross-section must be symmetrically reinforced (i.e., same number of bars on each side) – that means that we **must design odd number of bars** (4, 6, 8 etc.).

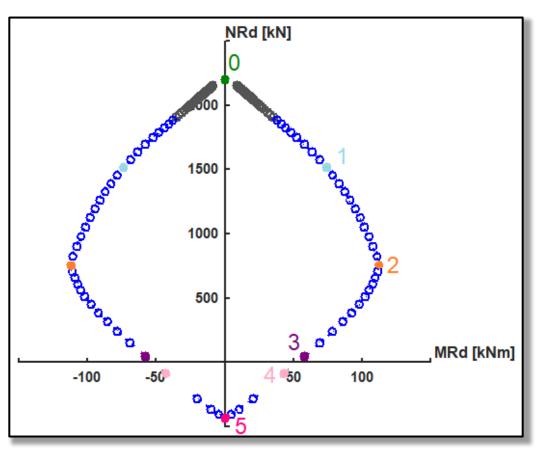
Check detailing rules for the designed reinforcement:

$$A_{\rm s,prov} \ge A_{\rm s,min} = \max\left(0.1\frac{N_{\rm Ed}}{f_{\rm yd}}; 0.002A_{\rm c}\right)$$
$$A_{\rm s,prov} \le A_{\rm s,max} = 0,04A_{\rm c}$$

We check the column using a "M-N interaction diagram (ID)".



The ID is made of many "load-bearing capacity" points. We will calculate only few of them.



The ID is created by:

- 1) Calculating main points of interaction diagram (0 to 6) see below.
- 2) Connecting points by lines (simplification).
- 3) Calculating minimum bending moment M_0 .
- 4) Restricting axial resistance using M_0 .

If internal forces lay inside the curve, the condition for the assessment of the column is satisfied. If not, adjust the design (but you don't have to recalculate the ID).

See the example of ID calculation on CM01 website.

Interaction diagram – all points

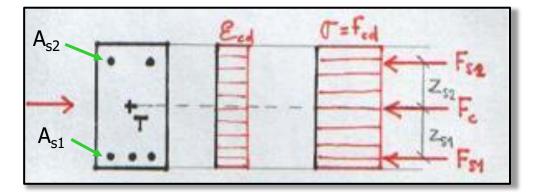
For each calculated point, the following is true.

The normal force load-bearing capacity is the sum the partial internal forces.

The **bending moment** load-bearing **capacity** is **the sum the moments generated by the partial internal forces**.

Point 0 – pure (axial) compression

Axial compression (maximum normal load-bearing capacity in compr.):

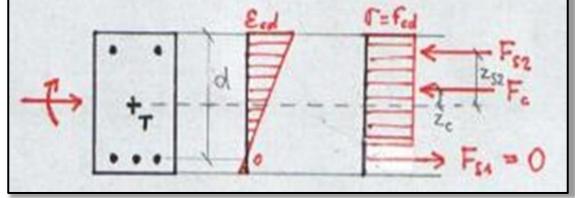


$$N_{\rm Rd,0} = F_{\rm c} + F_{\rm s1} + F_{\rm s2} = b_{\rm col}h_{\rm col}f_{\rm cd} + A_{\rm s1}\sigma_{\rm s} + A_{\rm s2}\sigma_{\rm s}$$
$$M_{\rm Rd,0} = F_{\rm s2}z_{\rm s2} - F_{\rm s1}z_{\rm s1} = (A_{\rm s2}z_{\rm s2} - A_{\rm s1}z_{\rm s1})\sigma_{\rm s}$$
See design of reinforcement

In our case, $A_{s1} = A_{s2}$ (= $A_{s,prov}/2$) and $z_{s1} = z_{s2}$ (= d - h/2) because we have symmetrical reinforcement.

Point 1 – strain in tensile reinforcement is 0

Strain in tensile reinforcement is 0 (almost whole cross-section is compressed):



 $N_{\rm Rd,1} = F_{\rm c} + F_{\rm c2} = 0.8b_{\rm col}df_{\rm cd} + A_{\rm s2}f_{\rm yd}$

$$M_{\rm Rd,1} = F_{\rm c} z_{\rm c} + F_{\rm s2} z_{\rm s2} = 0.8b_{\rm col}df_{\rm cd} \left(\frac{h}{2} - 0.4d\right) + A_{\rm s2}f_{\rm yd} z_{\rm s2}$$

Factor expressing the difference between real and idealized stress distribution, see HW3.

Point 2 – tensile reinforcement at yield stress

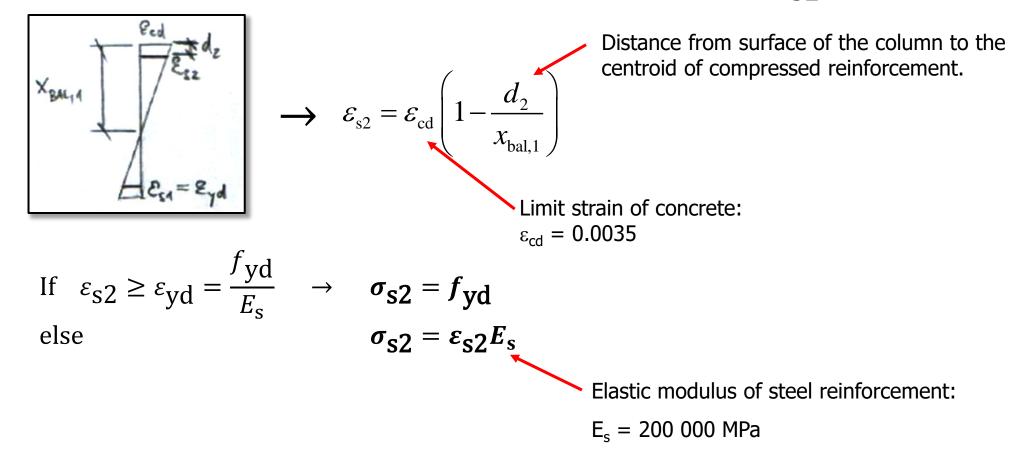
Stress in tensile reinforcement is $\sigma_{s1} = f_{yd}$ (maximum bending moment

resistance): T=ted Es = Eyd $N_{\rm Rd,2} = F_{\rm c} + F_{\rm s2} - F_{\rm s1} = 0.8b_{\rm col}x_{\rm bal,1}f_{\rm cd} + A_{\rm s2}\sigma_{\rm s2} - A_{\rm s1}f_{\rm vd}$ $M_{\rm Rd,2} = F_{\rm c} z_{\rm c} + F_{\rm s2} z_{\rm s2} + F_{\rm s1} z_{\rm s1} = 0.8b_{\rm col} x_{\rm bal,1} f_{\rm cd} \left(\frac{h}{2} - 0.4x_{\rm bal,1}\right) + A_{\rm s2} \sigma_{\rm s2} z_{\rm s2} + A_{\rm s1} f_{\rm yd} z_{\rm s1}$ $x_{\text{bal},1} = \xi_{\text{bal},1} d = \frac{700}{700 + f} d$

beton4life

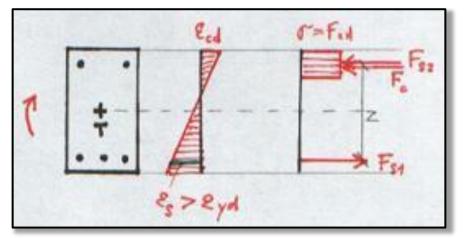
Point 2 – tensile reinforcement at yield stress

How to find stress in compressed reinforcement (σ_{s2})?



Point 3 – pure bending

Pure bending (no normal force):



 $N_{\rm Rd,3} = F_{\rm c} + F_{\rm s2} - F_{\rm s1} = 0$

$$M_{\rm Rd,3} = F_{\rm c} z_{\rm c} + F_{\rm s2} z_{\rm s2} + F_{\rm s1} z_{\rm s1} = 0.8b_{\rm col} x f_{\rm cd} \left(\frac{h}{2} - 0.4x\right) + A_{\rm s2} \sigma_{\rm s2} z_{\rm s2} + A_{\rm s1} f_{\rm yd} z_{\rm s1}$$

We have 2 unknowns:

- height of compressed part of concrete cross section (x),
- stress in compressed reinforcement (σ_{s2})

beton4life

Point 3 – pure bending

From "zero normal force" equation

 $A_{s1}\sigma_{s1} - 0.8xbf_{cd} - A_{s2}\sigma_{s2} = 0,$ an equation for compressive height can be derived:

$$x = \frac{A_s f_{yd} - A_s \sigma_{s2}}{0.8b f_{cd}}.$$

From **Hook's law and similar triangles** of strain, an equation for stress in compressed reinforcement can be derive:

$$\sigma_{s2} = \frac{0.0035}{x} (x - d_2) E_s.$$

Point 3 – pure bending

From

$$x = \frac{A_s f_{yd} - A_s \sigma_{s2}}{0.8 b_{col} f_{cd}}.$$
 and

$$\sigma_{s2} = \frac{0.0035}{x} (x - d_2) E_s.$$

a quadratic equation σ_{s2} for can be derived

$$\sigma_{s2}^{2}A_{s2} - \sigma_{s2}\left(A_{s1}f_{yd} + A_{s2}\varepsilon_{cd}E_{s}\right) + \varepsilon_{cd}E_{s}\left(A_{s1}f_{yd} - 0.8b_{col}f_{cd}d_{2}\right) = 0$$

Point 3 – pure bending

By solving equation

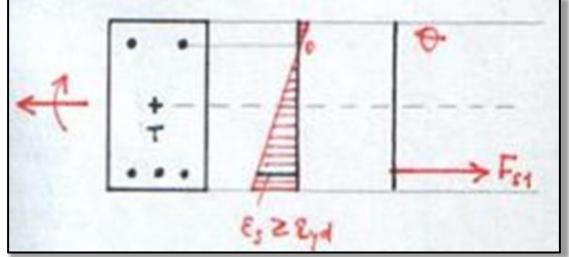
$$\sigma_{s2}^{2}A_{s2} - \sigma_{s2}\left(A_{s1}f_{yd} + A_{s2}\varepsilon_{cd}E_{s}\right) + \varepsilon_{cd}E_{s}\left(A_{s1}f_{yd} - 0.8b_{col}f_{cd}d_{2}\right) = 0$$

we will receive 2 values, but only one of them will "make sense" – we will use that one to calculate x:

$$x=\frac{A_sf_{yd}-A_s\sigma_{s2}}{0.8b_{col}f_{cd}}.$$

Point 4 – strain in compressive reinforcement is 0

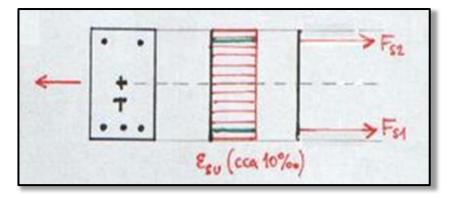
Strain in compressive reinforcement is 0 (almost whole cross-section is in tension):



$$N_{\rm Rd,4} = F_{\rm s1} = A_{\rm s1} f_{\rm yd}$$
$$M_{\rm Rd,4} = F_{\rm s1} z_{\rm s1} = A_{\rm s1} f_{\rm yd} z_{\rm s1}$$

Point 5 – pure (axial) tension

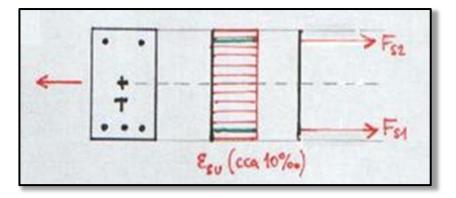
Axial tension (maximum normal load-bearing capacity in tension):



$$N_{\text{Rd},5} = F_{\text{s1}} + F_{\text{s2}} = (A_{\text{s1}} + A_{\text{s2}})f_{\text{yd}}$$
$$M_{\text{Rd},5} = F_{\text{s1}}z_{\text{s1}} - F_{\text{s2}}z_{\text{s2}} = (A_{\text{s1}}z_{\text{s1}} - A_{\text{s2}}z_{\text{s2}})f_{\text{yd}}$$

Point 5 – pure (axial) tension

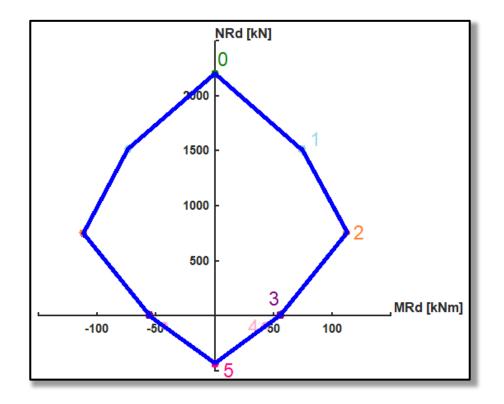
Axial tension (maximum normal load-bearing capacity in tension):



$$N_{\text{Rd},5} = F_{\text{s1}} + F_{\text{s2}} = (A_{\text{s1}} + A_{\text{s2}})f_{\text{yd}}$$
$$M_{\text{Rd},5} = F_{\text{s1}}z_{\text{s1}} - F_{\text{s2}}z_{\text{s2}} = (A_{\text{s1}}z_{\text{s1}} - A_{\text{s2}}z_{\text{s2}})f_{\text{yd}}$$

Interaction diagram

Using the calculated points 0 to 5, we create the ID



Minimal eccentricity

We must consider minimal eccentricity

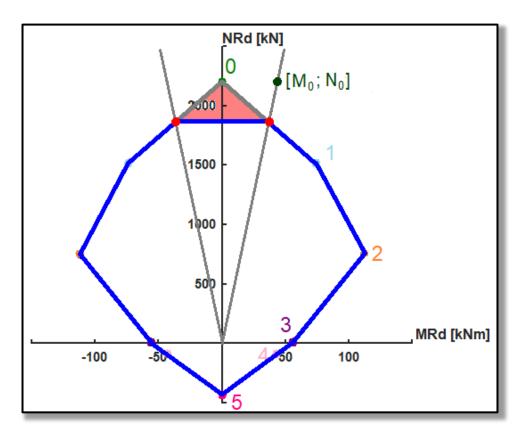
$$e_0 = \max\left(\frac{h_{col}}{30}; 20 \text{ mm}\right)$$

and calculate minimal bending moment

$$M_0 = N_{\rm Rd,0} e_0$$

Minimal eccentricity

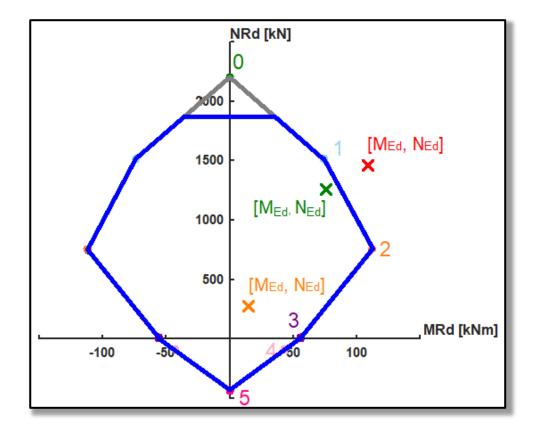
Using minimal bending moment, we restrict the ID (pure compression can never occur).



Column assessment

Using the ID, we can assess the column.

- If the point of internal forces lies outside the ID – column does not satisfy the assessment.
- If the point of internal forces lies inside the ID near its border – column does satisfy the assessment and is economic.
- If the point of internal forces lies inside the ID far from its border – column does satisfy the assessment but is not economic.



Next week

Next week

Next week

Next week we will focus on <u>reinforcement drawings</u> of the beam and column.

thank you for your attention

Recognitions

I thank **Assoc. Prof. Petr Bílý** for his original seminar presentation and other supporting materials from which this presentation was created.