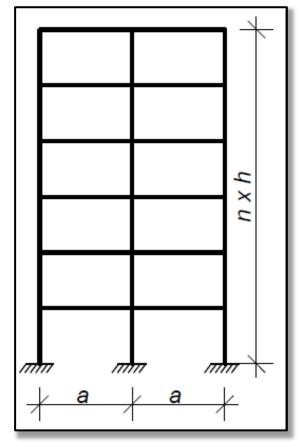


CM01 – Concrete and Masonry Structures 1

HW3 – Design of beam reinforcement

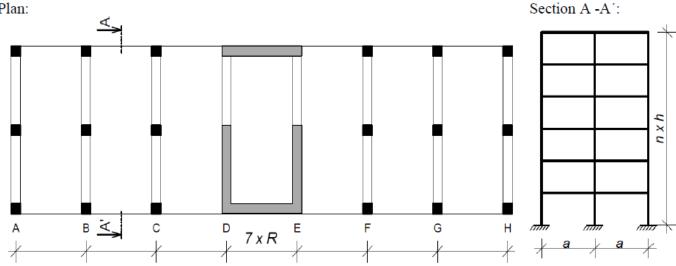
Author: Jakub Holan


Last update: 14.10.2022 14:54

Task 1

Task 1 – Frame structure

In Task 1, frame structure will be designed.



Task 1 – Assignment

Scheme of the stucture:

Plan:

Individual parameters (parameters in **bold** you can find on teacher's website):

Geometry: R, a [m] – horizontal dimensions, h [m] – floor height, n – number of floors

Materials: Concrete - concrete class

Steel B 500 B ($f_{yk} = 500 \text{ MPa}$)

Loads: Other permanent load of typical floor $(g-g_0)_{floor,k}$ [kN/m²]

Other permanent load of the roof $(g-g_0)_{roof,k}$ [kN/m²]

Live load of typical floor $q_{floor,k}$ [kN/m²] Live load of the roof $q_{\text{roof,k}} = 0.75 \text{ kN/m}^2$

Self-weight of the slab according to calculated depth

S – Exposure class related to environmental conditions Another parameters:

Z – Working life of the structure

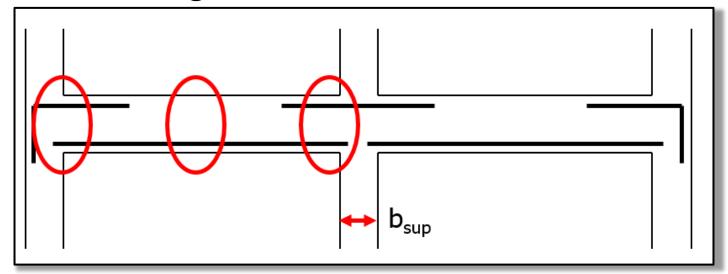
Task 1 – Assignment goals

Our goal will be to:

- Design the dimensions of all elements.
- Do detailed calculation of 2D frame calculation of bending moments, shear and normal forces using FEM software.
- Design steel reinforcement in the 1st floor members:
 - beam,
 - column.
- Draw layout of the reinforcement.

Design of beam reinforcement

Design of beam reinforcement

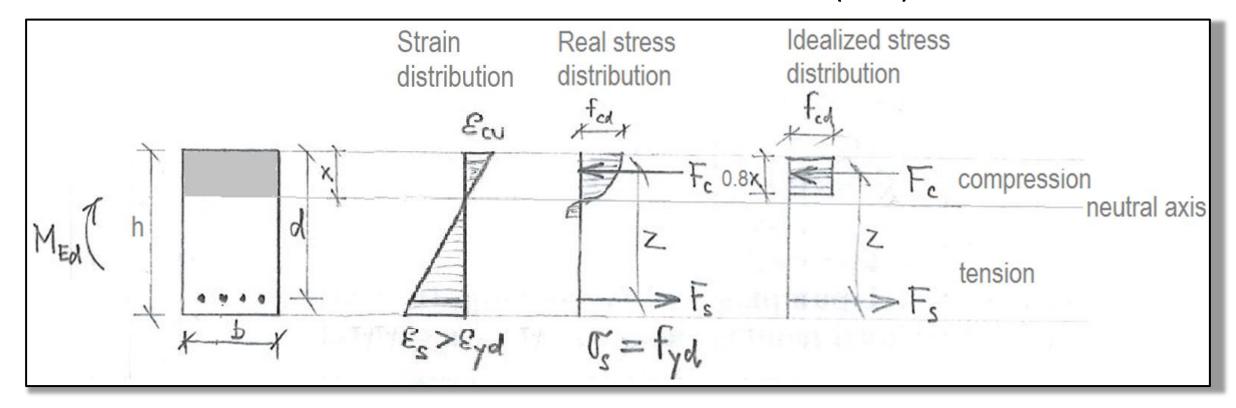

Using the maximal values of internal forces from the "envelope" of internal forces, we will design and assess:

- bending reinforcement of the beam,
- shear reinforcement of the beam.

Design of bending reinforcement

Design of bending reinforcement

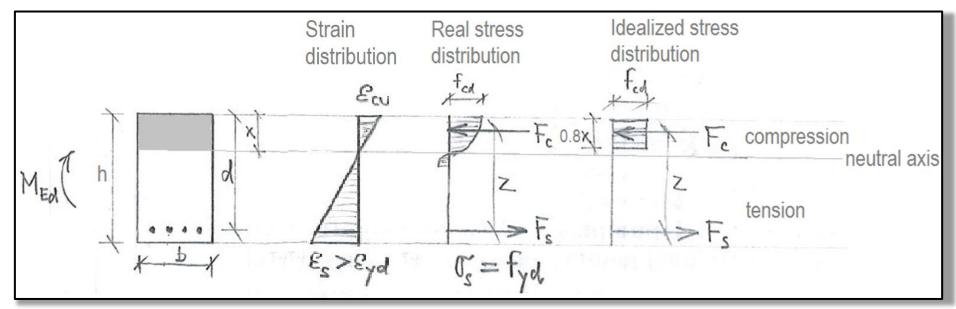
Design the tensile bending reinforcement in 3 cross-sections:



In supports, maximal values from FEM calculation should be reduced to values in the face of the column:

$$|M_{\text{Ed,red}}| = |M_{\text{Ed,FEM}}| - |V_{\text{Ed,FEM}}| \frac{b_{\text{sup}}}{2}$$

Bending


Strain and stress distribution in ultimate limit state (ULS):

Design of bending reinforcement

When designing the reinforcement, we employ the limit-moment assumption which means "assume that the load-bearing capacity will be equal to the bending moment":

$$M_{Rd} = M_{Ed}$$

Design of bending reinforcement

Derivation of required reinforcement area:

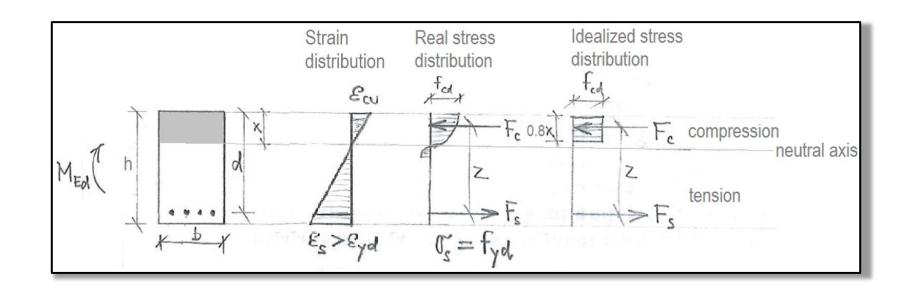
$$M_{Rd} = M_{Ed} \qquad \qquad \text{M}_{\text{Ed,red}} \text{ in supports, M}_{\text{Ed,FEM}} \text{ in midspan}$$

$$F_{\text{s}} Z = M_{Ed} \qquad \qquad \text{Stirrup diameter (assume 8 mm)}$$

$$A_{\text{s,rqd}} f_{\text{yd}} Z = M_{Ed} \qquad \qquad \text{Effective height of beam: } d_{\text{B}} = h_{\text{B}} - \frac{\varnothing}{2} - \varnothing_{\text{sw}} - c$$

$$A_{\text{s,rqd}} = \frac{M_{\text{Ed}}}{z f_{\text{yd}}} = \frac{M_{\text{Ed}}}{0.9 d_{\text{B}} f_{\text{yd}}} \Rightarrow \boxed{\text{Propose } A_{\text{s,prov}} \geq A_{\text{s,rqd}}}$$
 Bending reinforcement bar diameter - design 16 to 25 mm

Design number and diameter of bars:


Example: **DESIGN**:
$$3x \varnothing 16 (A_{s,prov} = 603 \text{ mm}^2)$$

(more only if necessary)

Assessment of bending reinforcement

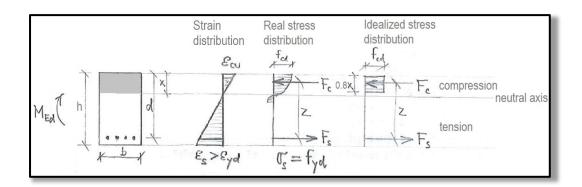
For one-side reinforced beam in pure bending, the partial internal normal forces are equal:

$$F_c = F_s$$

Assessment of bending reinforcement

Derivation of compressive height:

$$F_{c} = F_{s}$$


$$A_{c}f_{cd} = A_{s}f_{yd}$$

$$0.8xbf_{cd} = A_{s,prov}f_{yd}$$

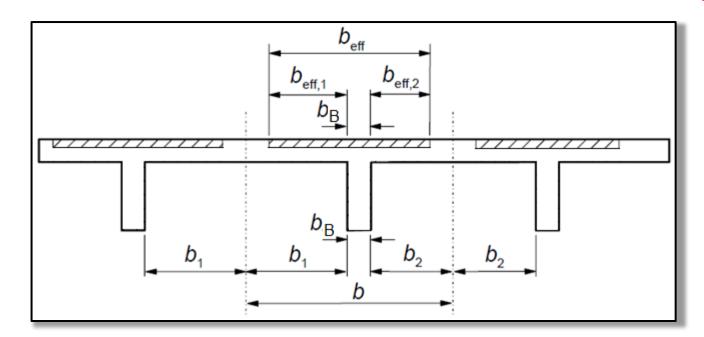
$$x = \frac{A_{s,prov}f_{yd}}{0.8bf_{cd}}$$

Width of compressed part of the cross-section:

- $b_{\rm B}$ in supports,
- $b_{\rm eff}$ in midspan.

Lever arm of internal forces: $z = d_{\rm B} - 0.4x$

Load-bearing capacity in bending: $M_{\rm Rd} = A_{\rm s,prov} f_{\rm vd} z \ge M_{\rm Ed}$


$$M_{\mathrm{Rd}} = A_{\mathrm{s,prov}} f_{\mathrm{yd}} z \ge M_{\mathrm{Ed}}$$

This MUST be satisfied!

Effective width b_{eff}

In mid-span, the slab acts as a part of the beam, and the beam is thus a T-section. The effective width is:

$$b_{\text{eff}} = \sum_{i} b_{\text{eff,i}} + b_{\text{B}} \le b$$
 where $b_{\text{eff,i}} = 0.2b_{\text{i}} + 0.1l_{0} \le 0.2l_{0}$ and $b_{\text{eff,i}} \le b_{\text{i}}$

Distance between zero moments on the beam:

- for outer span of the beam $\underline{I_0} \approx 0.85 \underline{I_B}$
- for inner span of the beam $l_0 \approx \overline{0}.7 l_B$

Check detailing rules

Relative compressive **height**:

$$\xi = \frac{x}{d_{\rm B}} \le \min \left(\xi_{\rm bal,1} = \frac{700}{700 + f_{\rm yd}}; 0, 45 \right)$$

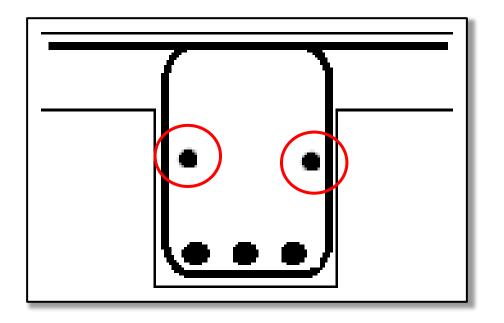
Minimal rebar area:

$$A_{\text{s,prov}} \ge A_{\text{s,min}} = \max \left(0.26 \frac{f_{\text{ctm}}}{f_{\text{yk}}} b_{\text{B}} d_{\text{B}}; 0.0013 b_{\text{B}} d_{\text{B}} \right)$$

Maximal rebar area:

$$A_{\rm s,prov} \le A_{\rm s,max} = 0.04 b_{\rm B} d_{\rm B}$$

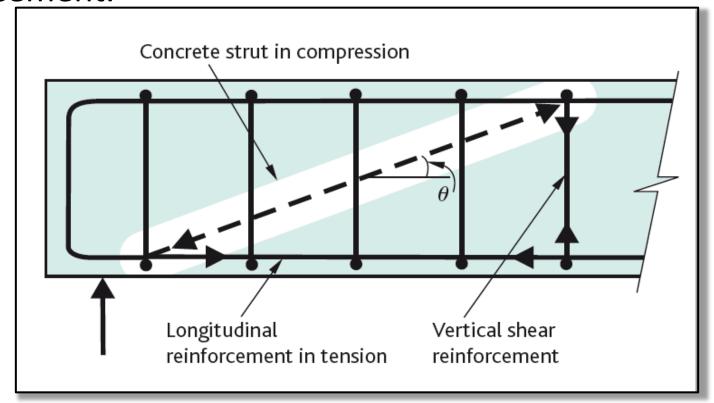
Maximal axial **spacing** of rebars:


$$s_{\rm a} \leq s_{\rm a,max} = \min(2h_{\rm B}; 250 \text{ mm}) \circ$$

Minimal clear **spacing** of rebars:

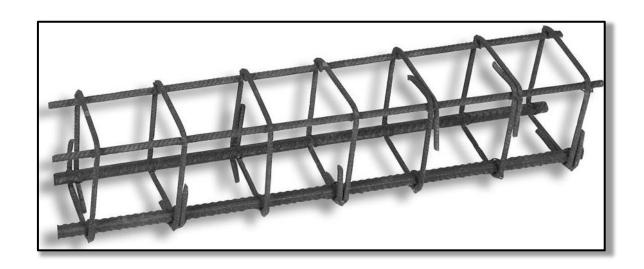
Mean tensile strength of concrete, see table with properties of concrete classes from 1st class

Check detailing rules


If $h_B \ge 500$ mm, torsion reinforcement is necessary (add two 12 mm rebars to the middle of the beam).

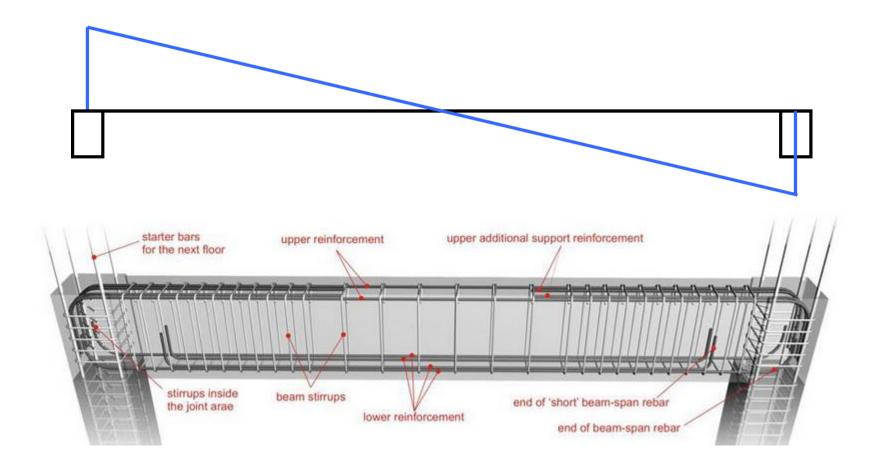
Design of shear reinforcement

Design of shear reinforcement

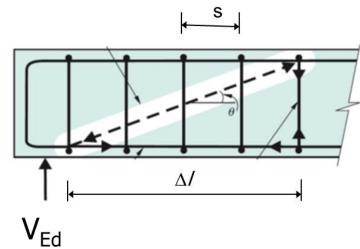

The shear force induces compression in concrete struts and tension in shear reinforcement.

Design of shear reinforcement

Resistance of compressed concrete struts was already checked in preliminary design ($V_{Rd,max} \ge V_{Ed,max}$).


Now, we must design and assess the shear reinforcement (stirrups).

Design of shear reinforcement – principle


The higher the shear force, the denser the stirrups.

Design of shear reinforcement – principle

The load-bearing capacity of stirrups is:

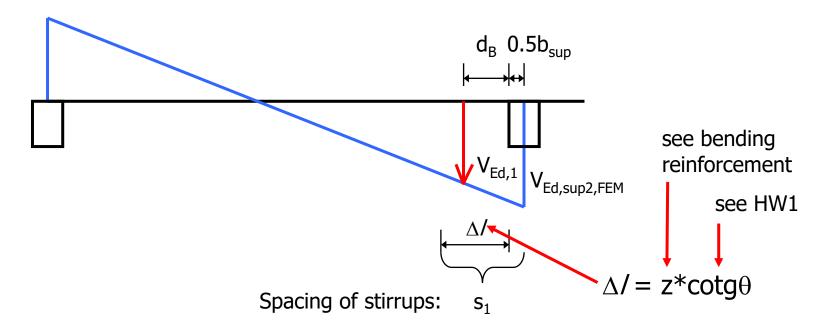
$$V_{Rd} = \underbrace{\frac{\Delta l}{S}}_{Sw} f_{yd}$$
Number of stirrups required on the length of Δl

where:

 $A_{sw}f_{yd}$ is the load-bearing capacity of one stirrup, s is the spacing of stirrups,

 Δl is the horizontal projection of the shear crack.

Design of shear reinforcement – principle

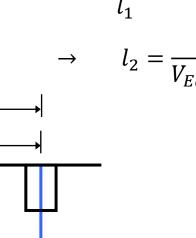

When designing the reinforcement, we employ the limit-force assumption which means "assume that the load-bearing capacity will be equal to the shear force":

$$V_{Ed} = V_{Rd}$$

$$V_{Ed} = \frac{\Delta l}{S} A_{sw} f_{yd}$$

Design of support shear reinforcement

The stirrups near the direct support are designed using the "reduced support shear force $V_{Ed,1}$ " in the distance d_B from the face of the column. We will design the stirrups in spacing s_1 (using design force $V_{Ed,1}$) up to the distance Δl from the support.



Design of support shear reinforcement

Design shear force (from similar triangles):

$$|V_{Ed,1}| = |V_{Ed,sup2}| \frac{l_2 - \left(\frac{b_{sup}}{2} + d_{B}\right)}{l_2}$$

V_{Ed,sup1}

 $V_{Ed,sup2}$

$$\frac{V_{Ed,sup1}}{l_1} = \frac{V_{Ed,sup2}}{l_2} = \frac{V_{Ed,sup1} + V_{Ed,sup1}}{l}$$

$$\rightarrow l_2 = \frac{l}{V_{Ed,sup1} + V_{Ed,sup1}} V_{Ed,sup2}$$

Design of support shear reinforcement

Spacing of stirrups:

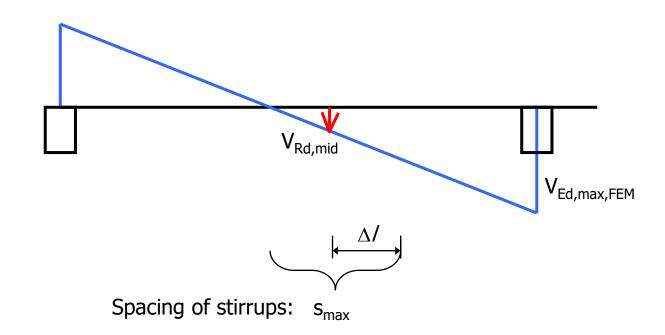
Cross-sectional area of 1 stirrup:
$$s_1 \leq \frac{A_{\rm sw}f_{\rm yd}}{V_{\rm Ed,1}}\Delta l \qquad A_{\rm sw} = \frac{n\pi \mathcal{O}_{\rm sw}^2}{4} \qquad \text{Number of legs of each stirrup, n=2}$$
 and $s_1 \leq 0.75d_{\rm B}$ and $s_1 \leq 400~{\rm mm}$ and $s_1 \geq 100~{\rm mm}$ (recommended)

DESIGN: Stirrup \emptyset_{SW} mm per S_1 mm

Assessment of support shear reinforcement

Assess the shear resistance:

$$V_{\mathrm{Rd,sw},1} = \frac{A_{\mathrm{sw}} f_{\mathrm{yd}}}{S_{1}} \Delta l \ge V_{\mathrm{Ed},1}$$


Check the shear reinforcement ratio

$$\rho_{\rm sw,1} = \frac{A_{\rm sw}}{b_{\rm B} s_{\rm 1}} \geq \rho_{\rm sw,min} = \frac{0.08 \sqrt{f_{\rm ck}}}{f_{\rm yk}} \qquad \begin{array}{c} \text{Coefficient expressing effect of shear cracks and transversal deformations:} \\ \rho_{\rm sw,1} = \frac{A_{\rm sw}}{b_{\rm B} s_{\rm 1}} \leq \rho_{\rm sw,max} = \frac{0.5 v f_{\rm cd}}{f_{\rm vd}} \\ \end{array}$$

If not satisfied, increase ϕ_{sw} or decrease s_1 .

Design of mid-span shear reinforcement

In middle part of the beam, shear force is low. Mid-span stirrups will be designed with maximum possible spacing s_{max} .

Design and check of mid-span shear reinforcement

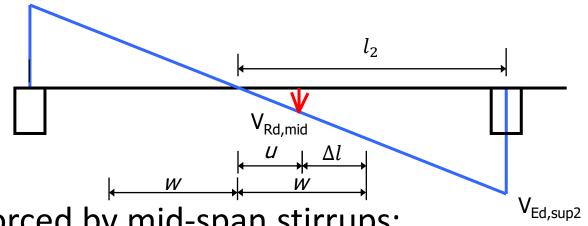
Design the spacing according to the condition:

$$s_{\text{max}} \le \min(0,75d_{\text{B}};400 \text{ mm})$$

Check the shear reinforcement ratio:

$$\rho_{\text{sw,2}} = \frac{A_{\text{sw}}}{b_{\text{B}} s_{\text{max}}} \ge \rho_{\text{sw,min}} = \frac{0.08 \sqrt{f_{\text{ck}}}}{f_{\text{yk}}}$$

$$\rho_{\text{sw,2}} = \frac{A_{\text{sw}}}{b_{\text{B}} s_{\text{max}}} \le \rho_{\text{sw,max}} = \frac{0.5 v f_{\text{cd}}}{f_{\text{yd}}}$$


If not satisfied, decrease s_{max}.

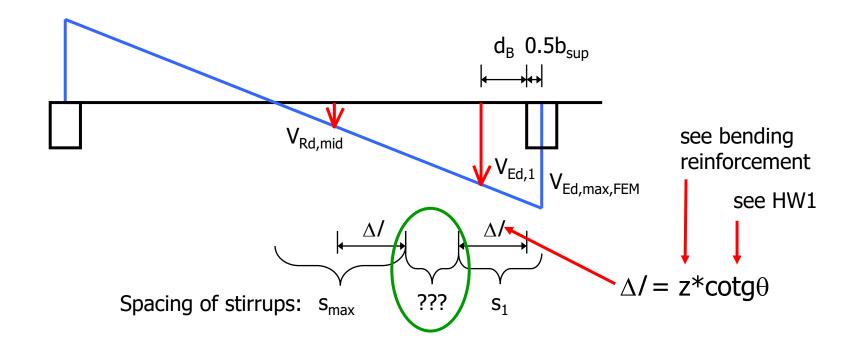
Location of mid-span shear reinforcement

Shear force for which s_{max} is sufficient:

$$V_{\rm Rd,mid} = \frac{A_{\rm sw} f_{\rm yd}}{S_{\rm max}} \Delta t$$

Position of V_{Rd,mid} (from similar triangles):

$$\frac{V_{Ed,sup2}}{l_2} = \frac{V_{Rd,min}}{u}$$

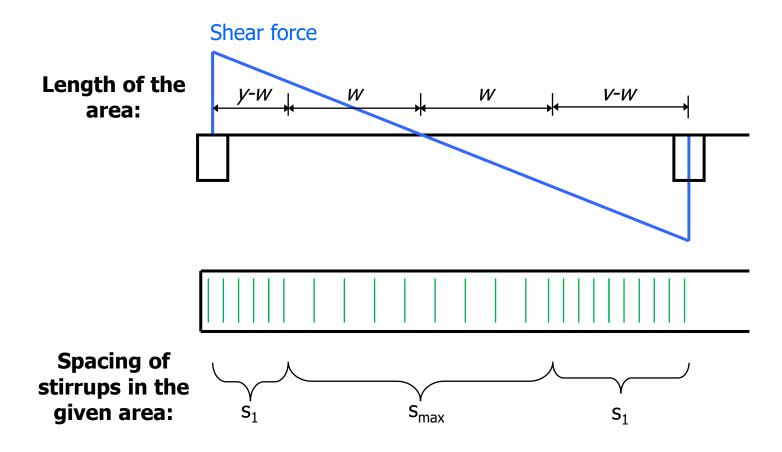

$$\rightarrow \qquad u = \frac{l_2}{V_{Ed,sup2}} V_{Rd,min}$$

Length reinforced by mid-span stirrups:

$$w = u + \Delta l$$

Design of intermediate shear reinforcement

Intermediate part?


Design of intermediate shear reinforcement

Theoretically, we could calculate $V_{Ed,2}$ (using similar triangles) and design spacing s_2 for the stirrups in the intermediate part ($s_1 < s_2 < s_{max}$).

BUT: This makes sense only for really long beams or beams with point forces.

In our case, we will use s_1 in the intermediate part.

Layout of stirrups

In your homework, draw the scheme in scale using your numerical values.

Next week

Next week

Next week we will focus on design and assessment of reinforcement of the column.

thank you for your attention

Recognitions

I thank **Assoc. Prof. Petr Bílý** for his original seminar presentation and other supporting materials from which this presentation was created.