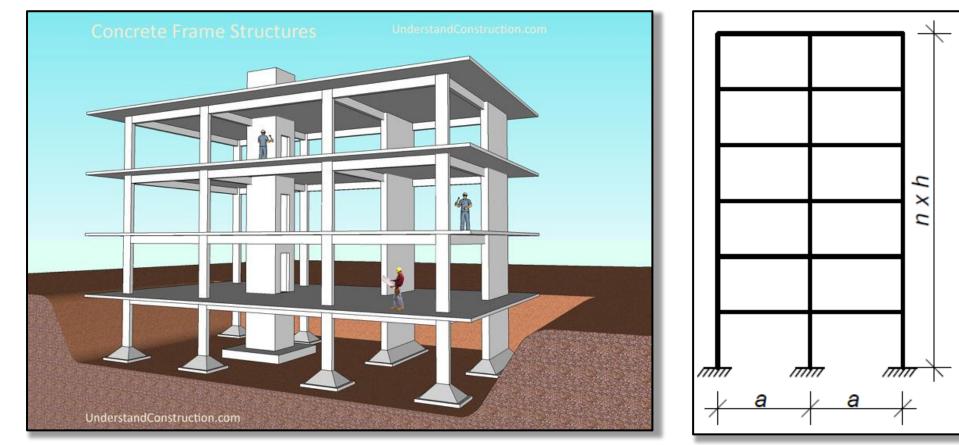
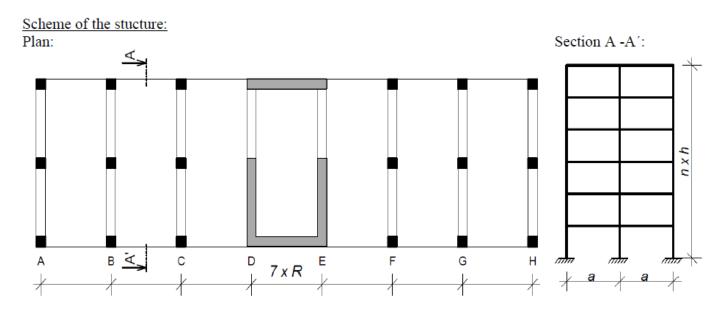


CM01 – Concrete and Masonry Structures 1 HW1 – Preliminary design of frame structure


Author: Jakub Holan Last update: 22.09.2022 16:07

Task 1



Task 1 – Frame structure

In Task 1, frame structure will be designed.

Task 1 – Assignment

Individual parameters (parameters in bold you can find on teacher's website):

<u>Geometry:</u> R, a [m] – horizontal dimensions, h [m] – floor height, n – number of floors

<u>Materials:</u> Concrete – concrete class Steel B 500 B (f_{yk} = 500 MPa)

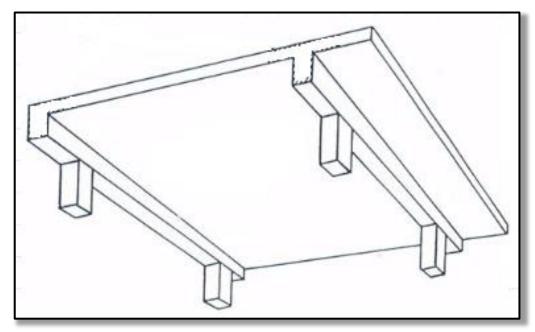
Loads:Other permanent load of typical floor $(g-g_0)_{floor,k}$ [kN/m²]Other permanent load of the roof $(g-g_0)_{roof,k}$ [kN/m²]Live load of typical floor $q_{floor,k}$ [kN/m²]Live load of the roof $q_{roof,k} = 0.75$ kN/m²Self-weight of the slab according to calculated depth

<u>Another parameters:</u> S – Exposure class related to environmental conditions Z – Working life of the structure

beton4life

Task 1 – Assignment goals

Our goal will be to:


- Design the dimensions of all elements.
- Do detailed calculation of 2D frame calculation of bending moments, shear and normal forces using FEM software.
- **Design steel reinforcement** in the members.
- Draw layout of the reinforcement.

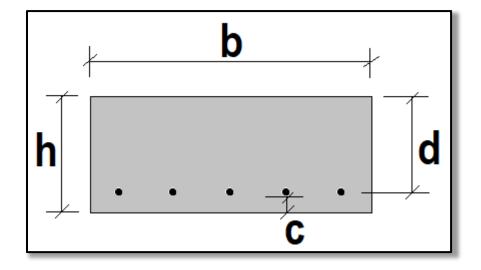
Task 1 – part 1

Task 1 – part 1

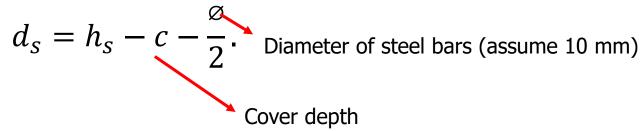
In this seminar, we will **design dimensions of all structural members** – i.e.:

- depth of the slab,
- cross-sectional dimensions of the beam,
- cross-sectional dimensions of the **column**.

We will also do a **<u>sketch of the structure</u>**.


Task 1 – part 1 *Slab*

Depth of a one-way slab

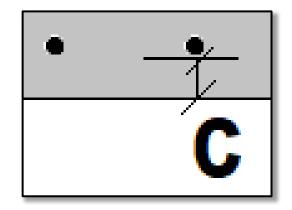

Empirical estimation of slab depth:

 $h_s = \frac{L_s}{30}$ to $\frac{L_s}{25}$.

The slab depth must be multiple of 10 mm.

Calculation of slab effective depth:

Slab


Cover depth c

Concrete cover for reinforcement is calculated using the equation:

 $c \geq c_{min} + \Delta c_{dev},$

where

 $c_{min} = \max(c_{min,b}, c_{min,dur}, 10 \text{ mm}),$ $\Delta c_{dev} = 10 \text{ mm}.$

Slab

Cover depth necessary for good mechanical bond between steel and concrete $c_{min,b}$ is equal to diameter of steel bars ($c_{min,b} = 10 \text{ mm}$).

Cover depth necessary for good resistance to unfavourable effects of the environment is obtained using the following table.

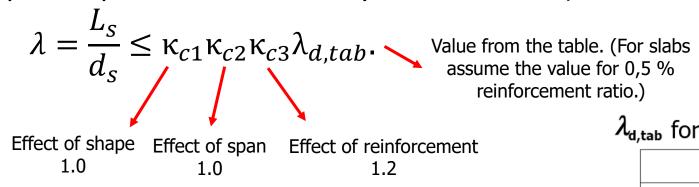
Cover depth *c_{min,dur}*

Step 1: Determine structure class (default is S4).

Structural class									
Criterion	Exposure class related to environmental conditions								
Chienon	XO	XC1	XC2	XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3	
Working life 80 years		increase class by 1							
Working life 100 years		increase class by 2							
Concrete class	decrease class by 1 if concrete class is at least:								
Concrete class	C20/25 C25/30 C30/37 C35/45 C40/50 C40/50 C40/5							C45/55	
Member with slab geometry		decrease class by 1							
Special quality control of concrete				decrease	class by 1				

Slab

Cover depth *c_{min,dur}*


Step 2: Determine cover depth.

Values of c _{min,dur} [mm]									
Structural class		Exposure	class relat	ed to envi	ronmental	conditions	3		
Structural class	XO	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3		
S1	10	10	10	15	20	25	30		
S2	10	10	15	20	25	30	35		
S3	10	10	20	25	30	35	40		
S4 (for 50 years)	10	15	25	30	35	40	45		
S5	15	20	30	35	40	45	50		
S6	20	25	35	40	45	50	55		

Slab

Assessment of the slab depth

Span/depth ratio must satisfy the condition (for deflection control):

 $\lambda_{d,tab}$ for outer span of the continuous beam/slab

	Concrete class									
ρ	12/15	12/15 16/20 20/25 25/30 30/37 40/50 50/60								
0,5 %	19,0	20,5	22,1	24,1	26	33,5	41,5			
1,5 %	15,9	16,4	16,9	17,6	18	19,5	20,8			

If the condition is satisfied, detailed calculation of deflections may be omitted in later detailed assessment. However, usually the slab is uneconomical (i.e., could be thinner) if the condition is satisfied.

Assessment of slab depth

Usually, the slab is uneconomical if the span/depth condition is satisfied. Therefore, **do not try to satisfy this condition**! Only adjust the empirical design with respect to the results of the condition.

If the condition is not satisfied by a little (up to 20%), it is not necessary to change the slab depth.

If the condition is **not satisfied by a large amount (over 20%)**, it is advisable to **increase the slab depth by 10 to 50 mm** (depending on how much the conditions was not satisfied).

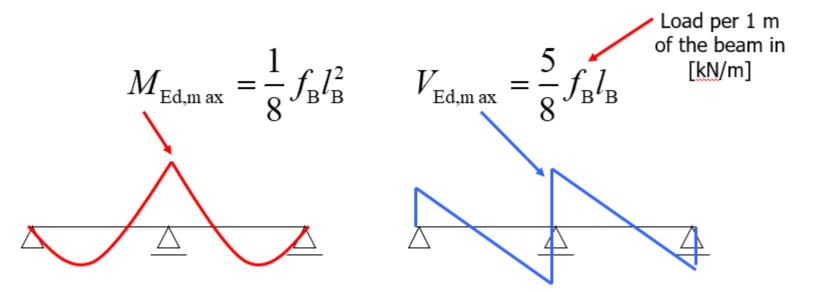
Slab

Task 1 – part 1 Beam

Cross-sectional dimension of the beam

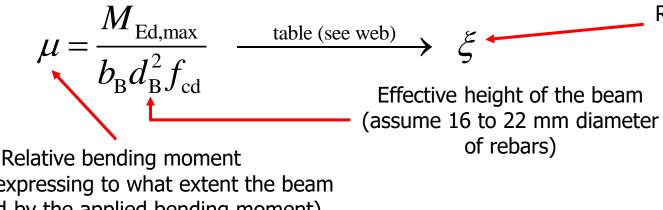
Empirical estimation of beam height and width:

$$h_B = rac{L_B}{15}$$
 to $rac{L_B}{12}$,
 $b_B = rac{h_B}{3}$ to $rac{2h_B}{3}$,


To reach sufficient stiffness of the beam, the following must be true: $h_B \ge 2.5 h_s$.

The beam height and width must be **multiple of 50 mm**.

Preliminary check of the beam


To avoid troubles during detailed assessment later (e.g., the beam is too thin and cannot be reinforced enough), preliminary check must be done.

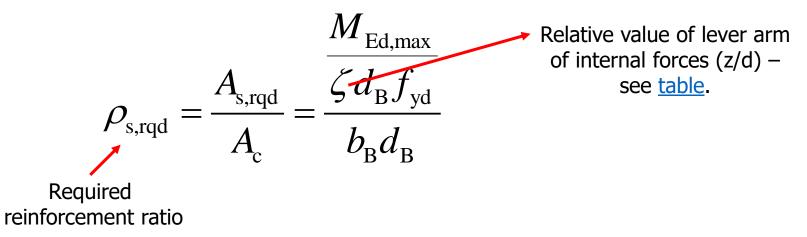
First, we estimate theoretical maximum values of internal forces in the beam.

Preliminary check of bending

For the check of bending, we calculate *relative bending moment* and find corresponding relative height of compressed part of the beam in a table.

Relative bending moment
(a factor expressing to what extent the beam
is utilized by the applied bending moment)

```
If \xi \in \langle 0.15; 0.4 \rangle, the design is ok.
If \xi < 0.15, you should decrease h_B and/or b_B.
If \xi > 0.4, you must increase h_B and/or b_B.
```

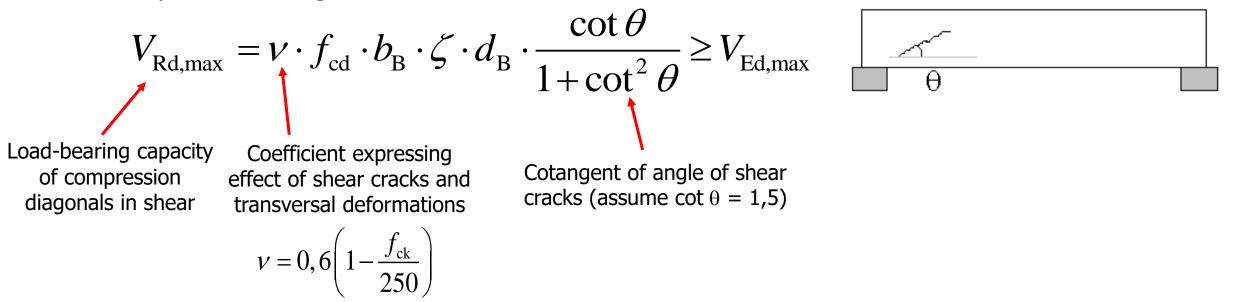

Relative height of compressed part of the beam (x/d)

μ	Θ	ζ	ζ	
0,010	0,0101	0,013	0,995	
0,020	0,0202	0,025	0,990	
0,030	0,0305	0,038	0,985	
0,040	0,0408	0,051	0,980	
0,050	0,051	0,064	0,974	
0,060	0,0619	0,077	0,969	
0,070	0,0726	0,091	0,964	
0,080	0,0835	0,104	0,958	
0,090	0,0945	0,118	0,953	
0,100	0,1056	0,132	0,947	

Beam

Preliminary check of reinforcement ratio

Reinforcement ratio must satisfy the condition:



If $\rho_{s,rqd} > 0.4$, you must increase h_B and/or b_B .

Beam

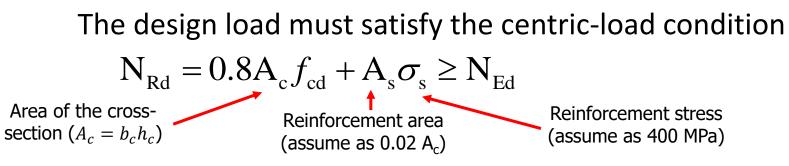
Preliminary check of load-bearing capacity in shear

Maximal shear force must satisfy the condition of load-bearing capacity of "compression diagonals":

If the condition is not satisfied, you must increase h_B and/or b_B .

Beam

Preliminary check of deflection (span/depth ratio)


For the check of span/depth ratio, use the **same calculation procedure as for slab with the following differences**.

- Select a row in the table for $\lambda_{d,tab}$ (outer span) according to value of $\rho_{s,rqd}$ calculated above.
- If the condition is not satisfied, you must increase h_B.

Task 1 – part 1 *Column*

Cross-sectional dimension of the column

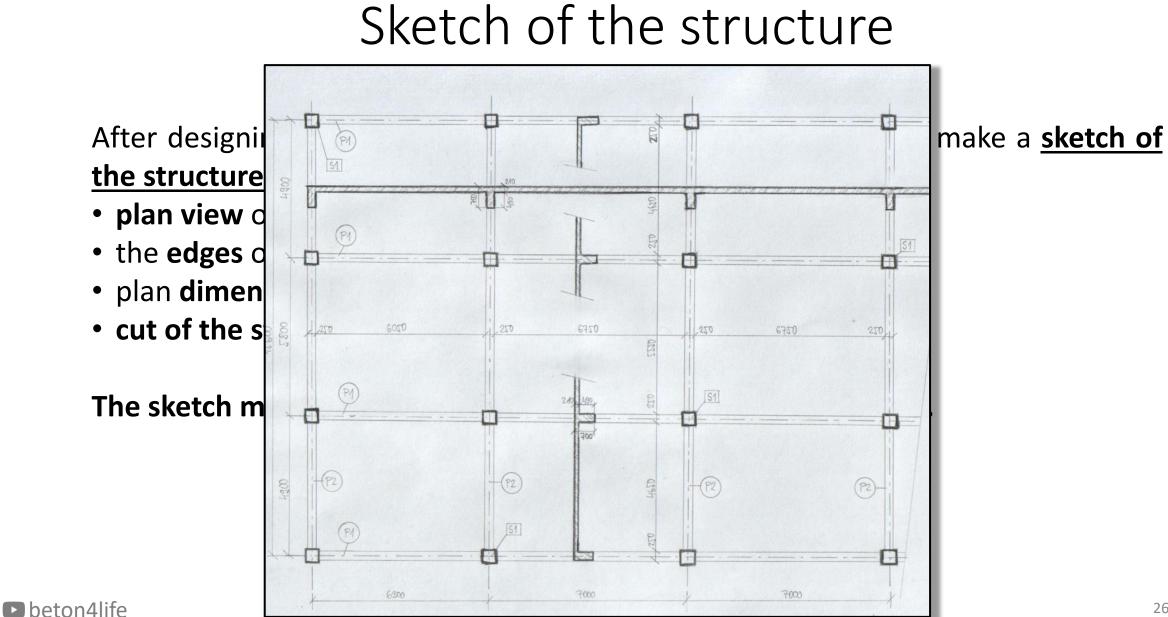
When designing column, the design load in its foot N_{Ed} must first be calculated.

from which, the condition for column cross-sectional area can be derived

$$A_{c} \geq \frac{N_{Ed}}{0.8f_{cd} + 0.02\sigma_{s}}$$

Design the column cross-section (width and height) in such a way that the condition above is satisfied. The dimensions must be multiples of 50 mm.

beton4life


Task 1 – part 1 Sketch of the structure

Sketch of the structure

After designing the dimensions of all the elements, we have to make a <u>sketch of</u> <u>the structure</u>. The sketch must include:

- plan view of the structure (at least 2 fields in each direction),
- the edges of columns, beams and slabs,
- plan dimensions,
- cut of the structure perpendicular to the beams.

The sketch must show all designed dimensions of the elements.

Task 1 – part 1 Examples of calculations used in the HW

Slab depth

Empirical estimation of slab depth for a slab with 6 m span:

$$h_s = \frac{L_s}{30}$$
 to $\frac{L_s}{25} = \frac{6000}{30}$ to $\frac{6000}{25} = 200$ mm to 240 mm $\rightarrow 200$ mm

Deflection control:

$$\frac{l}{d} = \frac{6000}{165} = 36.4 < 1.0 \cdot 1.0 \cdot 1.2 \cdot 33.5 = 40.2$$

Deflection control is satisfied -> h_s can be decreased.

Final design: $h_s = 190 \text{ mm}$

Effective slab depth:

$$d = 190 - 20 - \frac{10}{2} = 165 \text{ mm}$$
Deton4life

Slab loads

Loads on the floor slab for other permanent loads 0.5 kN/m^2 and variable load 3.0 kN/m^2 .

Slab loa	nd				
			charakteristic	$\gamma_{ m F}$	design
			kN/m ²	·	kN/m ²
Perman	ient				
	other permanent load		0,50		
	self weight	$0,19m \cdot 25kN/m^3$	4,75		
	Total		$g_k = 5,25$	1,35	$g_d = 7,09$
Variabl	e				
	(kategorie				
	C1)		$q_k = 3,00$ $(g+q)_k = 8,25$	1,5	$q_d = 4,50$ $(g+q)_d = 11,59$
Total			$(g+q)_k = 8,25$		$(g+q)_d = 11,59$

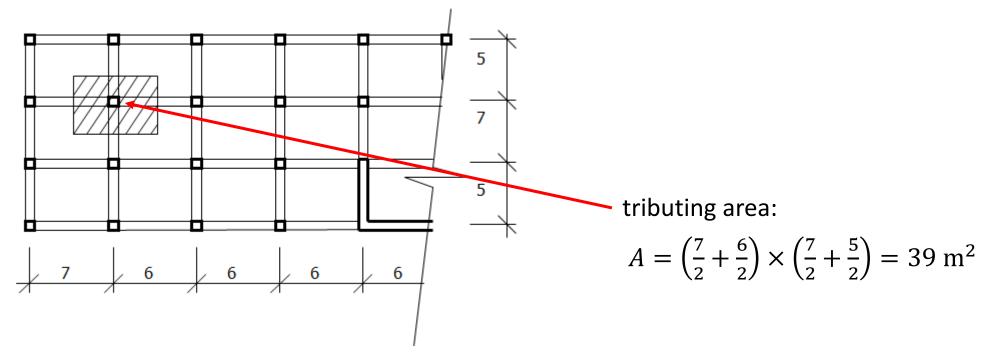
Roof loads

Loads on the roof slab for other permanent loads 2 kN/m^2 and inaccessible roof (0.75 kN/m²).

Roof loa	ad				
			charakteristic	$\gamma_{ m F}$	design
			kN/m ²	•	kN/m ²
Perman	ent				
	other permaner	other permanent load			
	self weight	$0,19m \cdot 25kN/m^3$	4,75		
	Total		$g_k = 6,75$	1,35	$g_d = 9,11$
Variabl	e				
	(kategorie C1)		$q_k = 0,75$	1,5	$q_d = 1,125$
Total			$ \begin{array}{c c} q_k = 0,75 \\ (g+q)_k = 7,5 \end{array} $		$(g+q)_d = 10,24$

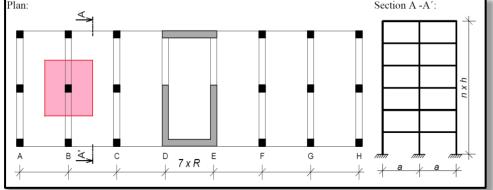
Beam dimensions

Empirical design of beam height for a beam with 7 m span:


$$h_B = \frac{L_B}{15}$$
 to $\frac{L_B}{12} = \frac{7000}{15}$ to $\frac{7000}{12} = 467$ mm to 538 mm $\rightarrow h_B = 500$ mm.

Empirical design of beam width for a beam with 500 mm height:

$$b_B = \frac{h_B}{3}$$
 to $\frac{2h_B}{3} = \frac{500}{3}$ to $\frac{1000}{3} = 167$ mm to 333 mm $\rightarrow h_B = 250$ mm.


Tributing area or a column

When determining the point load acting on column from a single floor, we must assign all of the loads inside the <u>tributing area</u> to the column.

Loading of a column

Point load for the internal column (column dimensions estimated as $300 \text{ mm} \times 300 \text{ mm}$ and column height is 3.5 m) in a 6 floor structure.

	Point load of a column									
Load type	Load name	f _{a,d}	tributing area	f _{lin,d} t	tributing length	F _{1,d}	number of members	Fd		
-	-	kN/m ²	m²	kN/m	m	kN	pcs	kN		
AREA LOADS (fa)	floor slab	11.59	39	-	-	452.0	5	2260.1		
AR LO2	roof slab	10.24	39	-	-	399.4	1	399.4		
LINEA R LOADS (fiin)	beam self weight	-	-	(0.5-0.19)·0.25·25·1.35 = 2.62	7	18.34	6	110.0		
Lov Flow	column self weight	-	-	0.3·0.3·25·1.35 = 3.04	3.5	10.6	6	63.8		
SUM							F _d =	2833.3		

beton4life

33

Design of column dimensions

From the centric load condition

 $N_{Ed} = 0.8A_c \cdot f_{cd} + A_s \sigma_s$

 $2.833 \text{ MN} = 0.8A_c \cdot 20 \text{ MPa} + (0.02A_c) \cdot 400 \text{ MPa}$

minimal cross-sectional area is derived

2.833 MN = $24A_c$ $A_{c,min} = 0.118 \text{ m}^2$

 \rightarrow column **350 mm** \times **350 mm** (A_c = 122 500 mm²).

Next week

Next week

Next week we will focus on detailed calculation of internal forces using FEM software.

Are you able to use any Finite Element Analysis software?

If not, check easy-to-use software IdeaStatica and **apply for** <u>student license</u>. When applying, **use your school student email** (e.g., "name.surname@estp.fr").

thank you for your attention

