

CM01 – Concrete and Masonry Structures 1 Introductory information to seminars

Author: Jakub Holan Last update: 22.09.2022 17:59

Course overview

Concrete and Masonry Structures 1 is an advanced course. You must have prior general knowledge of design of concrete structures – e.g., from the "Fundamentals of Structural Design" course.

2

beton4life

Seminar overview

Seminars:

- homework assignment,
- brief explanation of the homework,
- homework consultations and submission.

You must attend the lectures before this seminar, because **important information needed for the completion of the homeworks will be explained in the lectures**.

Seminar requirements

In order to **successfully pass the seminar**, you must:

- complete and submit all 12 homeworks,
- earn at least 24 homeworks (HW) points.

You <u>earn HW points</u> based on how quickly you submit your homework after the assignment. For precise dates see <u>Seminar programme</u>. Approximate dates are:

- 1 week after the assignment: 3 points,
- 2 weeks after the assignment: 2 points,
- 3 weeks after the assignment: 1 points.

Seminar requirements

	Seminar number	Seminar date	Task	Homework	Submission date 1 (for 3 HW points)	Submission date 2 (for 2 HW points)	Submission date 3 (for 1 HW points)	Final submission date (latest date for submission)				
In c	Seminar 1	Fri 23.09.2022	Task 1 Reinforced concrete	Preliminary design of frame structure	30.09.2022	07.10.2022	14.10.2022	21.10.2022				
mc	Seminar 2	Fri 30.09.2022		Calculation of internal forces in frame structure	07.10.2022	14.10.2022	21.10.2022	28.10.2022				
• •	Seminar 3	Fri 07.10.2022		Reinforcement of the beam	14.10.2022	21.10.2022	28.10.2022	04.11.2022				
C	Seminar 4	Fri 14.10.2022	Irame	Reinforcement of the column	21.10.2022	28.10.2022	04.11.2022	11.11.2022				
• e	Seminar 5	Fri 21.10.2022		Reinforcement drawing 04.11.2022		11.11.2022	18.11.2022	25.11.2022				
U		Fri 28.10.2022		Seminar canceled - state holiday (no classes on this day)								
	Seminar 6	Fri 04.11.2022	<u>Task 2</u> Two-way slab	Two-way slab supported on 4 edges	11.11.2022	25.11.2022	02.12.2022	09.12.2022				
	Seminar 7	Fri 11.11.2022	<u>Task 3</u> Slab supported by columns	Two-way slab supported on columns - dimensions, moments	25.11.2022	02.12.2022	09.12.2022	16.12.2022	_			
Υοι	Seminar 8	Mon 14.11.2022		Two-way slab supported on columns - bending and punching reinforcement	25.11.2022	02.12.2022	09.12.2022	16.12.2022	the			
ass	Seminar 9	Tue 15.11.2022	<u>Task 4</u> Stiffening wall	Design and assessment of stiffening walls	25.11.2022	02.12.2022	09.12.2022	16.12.2022				
		Fri 18.11.2022		Seminar canceled - Dean's day (no classes on this day)								
• 1	Seminar 10	Fri 25.11.2022	Task 5	Reinforced concrete staircase - design	02.12.2022	09.12.2022	16.12.2022	06.01.2023				
-	Seminar 11	Fri 02.12.2022	Staircase	Reinforced concrete staircase - assessment	09.12.2022	16.12.2022	06.01.2023	06.01.2023				
• 2	Seminar 12	Eri 00 12 2022	<u>Task 6</u> Structural drawing	Structural drawing	16 12 2022	00 01 2022		06.01.2022				
		FII 09.12.2022	<u>Task 7</u> Pad footings	Pad footings	10.12.2022	00.01.2025	-	00.01.2025				
• 3	Seminar 13	Fri 16.12.2022		Homework consultations and submissions.								
		Fri 06.01.2023		Additional homework consultations and submissions.								
				Latest date for successful submission of homework and passing the seminars. 06.01.2								

Homework assignments

All of the task assignments and support materials are available on Dr. Bílý's page.

Individual homeworks will be assigned on each seminar.

- a, b [m] horizontal dimensions of the structure (a see 1st task), h. [mm] depth of the slab
- see 1st task, values for typical floor (except the self weight, which will be different)
 - a) Using linear analysis (do not consider the effect of torsion moments caused by prevented lifting of the comer of the slab). Proceed from the assumption that the deflections in x and y directions are equal.
- b) Using precalculated tables based on the theory of plasticity (effect of torsion moment is included)
 2. Check of given depth of the slab consider bending moments from1b) (if the slab is not checked, just propose the adjustment, do not recalculate bending moments!) 3. Calculation of loading of given beam or wall.

		Task 1							Task 2			Task 3	Task 4					
		R	а	h	n	(g-g0)floor,k	(g-g0)roof,k	qfloor,k	P	Z	oncrete clas	Scheme	Member	b [m]	hs [mm]	d [m]	τ	W
No.	Name	[m]	[m]	[m]	•	[kN/m2]	[kN/m2]	[kN/m2]		[years]	•		•	[m]	[m]	[m]		•
1	Avramita, Mara	5.4	6.9	3.7	5	1.6	1.8	3.9	XC2	50	C30/37	Α	P1	6.7	220	7.1	=	- I
2	Björk, Sofie	4.1	5.9	3.4	6	1.3	1.6	2.9	XC1	50	C30/37	В	P1	6.9	200	7.1	IV	11
3	Bonnin, Andréa	4.3	7.2	3.7	4	0.9	1.7	4.4	XC2	50	C30/37	С	P1	7.3	230	7.1		
4	Charles Moody, Henry	5.0	6.8	4.0	6	1.3	2.1	2.9	XC1	50	C30/37	D	S1	7.3	230	8.3	IV	1
5	Lambaek, Jeppe	5.4	6.2	3.1	5	0.9	1.4	2.4	XC1	80	C30/37	E	P1	7.6	220	8.3	III	- II
6	Larssen, Line Karina	4.5	6.4	3.3	4	1.9	1.1	4.9	XC2	80	C30/37	F	P1	6.1	200	8.1	IV	
7	Mackenzie, Stephen	4.8	4.7	3.6	6	1.8	1.9	4.1	XC1	50	C25/30	A	P2	5.8	170	6.5	111	1
8	Nogueira Carvalho, Jorge Gregory	4.4	5.6	3.9	7	1.1	1.9	2.9	XC1	50	C25/30	В	P2	5.5	180	6.5	IV	1
9	Pacheco Pereira Cavaco, Pedro	4.9	6.0	3.3	5	1.4	1.7	4.9	XC2	50	C25/30	С	P2	6.1	190	6.1	III	
10	Pedrosa De Sousa, Miguel Alexandre	5.2	5.9	3.4	4	1.1	2.1	4.0	XC2	50	C25/30	D	P2	6.1	190	7.7	IV	1
11	Pereira Amado, Ricardo Luís	4.0	5.4	3.5	5	1.4	1.4	4.9	XC1	80	C25/30	E	P2	6.7	190	7.7		11
12	Teodorescu, Andrei-Cosmin	4.8	4.9	3.7	6	1.6	2.7	4.9	XC1	80	C25/30	F	P2	6.1	180	7.1	IV	
13		5.3	5.6	3.7	6	1.7	1.8	4.9	XC1	50	C20/25	A	P1	6.7	200	6.7		1
14		4.9	5.9	3.1	8	1.5	1.7	1.9	XC2	50	C20/25	В	P1	6.1	190	6.2	IV	11
15		5.1	6.0	3.6	5	1.1	1.7	2.9	XC1	50	C20/25	С	P1	6.1	190	8.3	III	
16		4.2	6.2	3.7	4	2.0	2.1	4.9	XC2	50	C20/25	D	S1	7.0	210	8.6	IV	- I
17		5.1	6.2	3.3	5	2.1	1.4	3.9	XC1	80	C20/25	E	P1	7.3	220	7.4	111	1
18		4.6	6.5	3.4	7	1.9	1.1	2.4	XC1	80	C20/25	F	P1	6.7	210	7.4	IV	
19		5.2	7.1	3.4	6	1.7	1.8	2.9	XC1	50	C30/37	A	P2	6.1	210	7.1	- 111	1
20		5.5	6.9	3.9	5	1.6	1.9	2.9	XC1	50	C30/37	В	P2	7.6	230	8.1	IV	11
21		5.3	5.9	4.0	4	1.4	1.7	3.8	XC2	50	C30/37	С	P2	6.7	200	7.7	111	
22		4.7	5.4	4.3	8	1.9	2.4	3.9	XC2	50	C30/37	D	P2	6.1	180	7.1	IV	1
23		5.0	5.6	3.7	6	1.3	1.9	2.9	XC1	80	C30/37	E	P2	5.8	180	7.7	IV	1
24		5.1	6.0	3.2	5	1.6	1.8	4.2	XC1	50	C30/37	F	P2	6.2	200	7.5	IV	
25		4.9	5.4	3.7	6	1.2	1.8	3.0	XC2	80	C30/37	A	P1	6.2	190	7.7		1

Homework rules

There are **specific rules** regarding the form of the homeworks.

- Write your homework on one-sided A4 paper with 5 cm left margin.
- All load calculations must be done in tables.
- Draw simple but clear schemes (for better understanding).

SLAB LOAD				
Туре	Name	$f_k [kN/m^2]$	γ_F	$f_d [kN/m^2]$
Permanent	-Surface layer (carpet/ceramic)	0.20	1.35	0.27
(Dead load)	-Glue layer	0.01	1.35	0.01
	-Concrete (leveling layer)	1.25	1.35	1.69
	-Separation foil	0.01	1.35	0.01
	-Acoustic insulation (EPS/XPS)	0.05	1.35	0.07
	-Reinforced concrete	0.28*25=6.88	1.35	9.28
	-Plaster	0.06	1.35	0.08
	-Partitions	0.11	1.35	0.15
Variable (Live load)		2.00	1.50	3.00
Total		$\Sigma = 10.57$		$\Sigma = 14.56$

Homework rules 2

There are **specific rules** regarding the form of the homeworks.

- Homework must be **well arranged, clear, and controllable**.
- Pages must be **numbered** (for cross referencing).
- All calculations and assumptions used in the analysis must be written.
- Write general equations (with letters), specific equations (with numbers), and results with units.

Introductory test

Assignment 1

Calculate the **design area load** $f_{a,d}[kN/m^2]$ on a concrete slab (plate). The slab is 200 mm thick and is loaded by:

- self weight,
- other dead (permanent) load: $f_{(g-g_0),k} = 1.5 \text{ kN/m}^2$,
- live (imposed) load: $f_{q,k} = 3 \text{ kN/m}^2$.

Hint:

$$g_0 = h \gamma_c$$
$$\gamma_G = 1.35$$
$$\gamma_O = 1.5$$

Assignment 2

Calculate the load-bearing capacity of a cross-section in bending M_{Rd} of the given cross-section. Overall area of steel rebars is $A_s = 800 \text{ mm}^2$. Materials:

- concrete C30/37,
- steel B 500B.

thank you for your attention

