79111720 T

4th TASK. RC StIFFENING WALLS IN THE STRUCTURE FROM 3thTASK in LONGITUDINAL

$$
\begin{gathered}
T \equiv \text { IV } \\
W \equiv I \\
n^{\circ} \text { of floors }=7 \\
h=3^{\prime} 9 \mathrm{~m} \\
n \times h=27^{\prime} 3 \mathrm{~m}
\end{gathered}
$$ DIRECTION,

$$
P_{V}=I^{\prime} 25 \mathrm{~kg} / \mathrm{m}^{3}
$$

(density of air)
For wind load area $w=I$ $4 V_{b}=2215 \mathrm{~m} / \mathrm{s}$ $C_{f e}=1^{\prime} 3($ External preassure coeffict).

1. UIND LOAD

Characteristic value $\left(\omega_{k}\right): \omega_{k}=q_{b} \cdot C e(z) \cdot c_{e}$

$$
\begin{aligned}
& q_{b}=\frac{1}{2} p_{v} \cdot v_{b}^{2} \\
& q_{b}=\frac{1}{2} \cdot 1^{\prime} 25 \cdot 22^{\prime} 5^{2}=316 \mathrm{~N} / \mathrm{m}^{2}=0^{\prime} 316 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$C e(z)=1^{\prime} 9$ for $a z=27^{\prime} 3 \mathrm{~m}$ and $T \cdot C=I V$

$$
m_{\kappa}=0^{\prime} 316 \cdot 1^{\prime} 3 \cdot 1^{\prime} 9=0^{\prime} 78 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
u d=\gamma_{Q} u_{k}
$$

$$
\begin{aligned}
& \text { Aas patod fortor } \\
& 1 a=s=
\end{aligned}
$$

$$
\begin{aligned}
& \text { ud }=1^{\prime} 50^{\prime} 18 \\
& \text { ud }=117 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

We need linear load in KN / m :

$$
\begin{aligned}
& \text { WK.Un }=\text { Uk } \mathrm{B}=0^{\prime} 78 \cdot 27^{\prime} 7=21^{\prime} 61 \mathrm{kN} / \mathrm{m} \\
& \therefore \text { N. NERTIGAL LOADS }
\end{aligned}
$$

I eshmate 2 walls of lenght $=5.5 \mathrm{~m}$ and thackness 250 mm

MINIMVM UEFTIGAL LOAD The onbuting area:

Fon Fhin th
Atrib:65, 11-715 m
shte inod a $1 \mathrm{~s}^{\prime} 15 \mathrm{k} \mathrm{m}^{2} \quad \mathrm{Rman}_{\mathrm{m}}=7 \cdot 715 \cdot 10113$

Nat pass-7

Fran Tase 3 : the desng tond.

$$
\frac{1}{d}+1597 \times \mathrm{N}_{6}=
$$

MANIMUME VERTICAL COAD

Cf will be use.
$m=2 \equiv n^{\circ}$ of stiffening swells
3. DESING OF GEOHETRY OF THE GIALLS

The total bending moment in the foot of all stiffening walls is.

$$
\begin{gathered}
M_{m}=\frac{1}{2} \cdot U_{k} \cdot \operatorname{len}_{n} \cdot H^{2} \\
M_{m u} \cdot \frac{1}{2} \cdot 21^{\prime} 61 \cdot 27^{\prime} 3^{2} \div 3053 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

And the stress from the characteristic wind lad: $\sigma_{W}= \pm \frac{1}{m} \cdot \frac{M_{u}}{W} ; \quad w=\frac{t \cdot L^{2}}{6}=\begin{aligned} & \text { section modulus } \\ & \text { of one wall }\end{aligned}$ $W=\frac{0,25 \cdot 5^{\prime} 5^{2}}{6}=1^{\prime} 26 \mathrm{~m}^{3}$

$$
\sigma_{u}= \pm \frac{1}{2} \cdot \frac{5053[K N m]}{1226}\left[\mathrm{~m}^{3}\right] \quad \cong 3196 \mathrm{kN} / \mathrm{m}^{2}
$$

Stress from the minimum vertical load:

$$
\begin{aligned}
& \sigma_{N}=\frac{R_{\text {MIN }}}{A} ; A=t \cdot L=0^{\prime} 25 \cdot 5^{\prime 5}=1^{\prime} 38 \mathrm{~m}^{2} \\
& \sigma_{N}=\frac{5070}{1^{\prime} 38}=3657 \mathrm{kN} / \mathrm{m}^{2} \quad 3687 \mathrm{kN} / \mathrm{m}^{2} \\
& \text { Tension is avoid from cs, } \\
& \text { so the estimated geometry } \\
& \text { is corrected: } \\
& \text { 2 equals of } L=5.5 \mathrm{~m} \text { and } \\
& \text { thickness of } 250 \mathrm{~mm}
\end{aligned}
$$

4. DESINGOF REINFORCEMENT

C2: $H_{m i}=\frac{1}{2} \cdot \operatorname{did} H^{2}=\frac{1}{2} \cdot 1^{\prime} 17 \frac{\mathrm{kN}}{\mathrm{m}^{2}} \cdot 27^{\prime} 7 \mathrm{~m} \cdot 27^{\prime} 3^{2}$ Hur - 12077 KN.M
$T_{w}= \pm \frac{1}{2} \cdot \frac{12077}{1^{\prime 26}}= \pm 4792^{\prime} 5$
$\sigma_{N}=\frac{7993}{1138}=5813$
\rightarrow No tension
C3: σ_{M} isame as in $c_{2} \rightarrow \sigma_{M}= \pm 4792$'s $\sigma_{N} \equiv$ same as is cs $\rightarrow J_{N}=3687$
4. Tension
\downarrow
Reinforcement
vertical beintorcement

$$
0^{\prime} 002 \cdot a c \leq a s \cdot v \leq 0^{\prime} 04 \cdot a c
$$

$S_{v} \leq \min (3 t ; 400) \mathrm{mm}=(3.250 ; 400)=750 \mathrm{~mm}$
$a_{c}=250 \cdot 1000=25 e^{4} \mathrm{~mm}^{2}$

$$
500 \leqslant a s v \leqslant 10000 \mathrm{~mm}^{2}
$$

$$
a_{s v}=500 \mathrm{~mm}^{2}
$$

$\phi 8$ a $200 \mathrm{~mm} \rightarrow$ asv $=2.251 \mathrm{~mm}^{2} / \mathrm{m}$
horizontal reinforcement

$$
\begin{aligned}
a_{S, H} & \geqslant \max \left(0^{\prime} 25 \cdot a_{S, v} ; 0^{\prime} 001 \cdot a_{c}\right) \\
S_{H} & \leq 400 \mathrm{~mm}
\end{aligned}
$$

$a_{S H} \geq \max \left(0^{\prime} 25 \cdot 500 ; 0^{\prime} 001 \cdot 25 \mathrm{e}^{4}\right)$
$a_{S U} \geqslant \max (125 ; 250) \mathrm{mm}^{2}$

$$
a_{S H}=250 \mathrm{~mm}^{2}
$$

$\phi 8$ a $400 \mathrm{~mm} \rightarrow a_{S H}=2.126 \mathrm{~mm}^{2} / \mathrm{m}$

COMPRESSED REINFORCEMENT

$$
\begin{aligned}
& { }^{\circ} \cdot V_{s}=400 \mathrm{MPa} \\
& \text { of od }=16.67 \mathrm{MPa} \\
& \text { for } C 25130
\end{aligned}
$$

- fud = $434^{\prime} 78 \mathrm{MPa}$ for B500S

$$
\begin{aligned}
& N=\sigma_{\phi} \cdot t \cdot 1 \mathrm{~m} \\
& N=8677 \cdot 0^{\prime} 25 \cdot 1 \\
& N=2169^{\prime} 3 \mathrm{kN}
\end{aligned}
$$

The required area of vertical reinforcement is:

$$
a_{s, r e q, v}=\frac{N-o^{\prime} 8 \cdot a_{c} \cdot f c d}{\sigma_{s}}
$$

$$
a_{\text {s, req, }}=\frac{2169^{\prime} 3-0^{\prime} 8 \cdot 0^{\prime} 25 \cdot 1 \cdot 16^{\prime} 67 e^{3}}{400 e^{3} 1105^{\prime 5}}=-0^{\prime} 0029<1
$$

TENSILE REINFORCEMENT

$$
\begin{aligned}
& N=904^{\prime} 5 \cdot 0^{\prime} 25.1 \\
& N=226^{\prime} 13 \mathrm{kN}
\end{aligned}
$$

$$
a_{\text {s, req }}=\frac{N}{f_{y d}}=\frac{226^{\prime} 13}{434^{\prime} 78 e^{3}}
$$

$$
5^{\prime} 5+1105 ' 5
$$

$$
45 \rightarrow 9045
$$

$$
\text { Asireqiv }=0^{\prime} 00052 \mathrm{~m}^{2}=520 \mathrm{~mm}^{2}
$$

$$
a_{\text {siren, }}=520 \mathrm{~mm}^{2}>a_{\mathrm{siv}}=500 \mathrm{~mm}^{2}
$$

So, $\varnothing 8$ a $150 \mathrm{~mm} \rightarrow a_{s v}=2.335 \mathrm{~mm}^{2} / \mathrm{m}$
and $\Phi 8$ a $400 \mathrm{~mm} \rightarrow a_{S H}=2.126 \mathrm{~mm}^{2} / \mathrm{m}$

