1 TASK: FRAME STRUCTURE

DATA

Concrete: C25/30

Steel: B5∞

4 coofix = 0, 12 KN/Wz

weight of the concrete = 25 KN/m3

1, DEPTH OF THE SLAB (ONE-WAY SLAB)

hs =
$$\frac{4}{30}$$
 . 4400 = 146 67 mm
hs = $\frac{4}{25}$ 4400 = 176 mm

hs= 150 mm - 190 mm, (Round slab dimension to 10 mm)

I mil use hs=180 mm (for bigger Loads)

1.2. Effective depth (d): d=hs-c- 9

1.2.1. C = Cmin + Acder Crin = max (Crin, b; Crin, du; 10 mm)

Acder = 10 mm.

Comin, dur: with 54 and XC1 -> Comin, dur = 15 mm Cminib = 10 mm

						400			
Val <mark>ues of c_{min,dur} [mm]</mark>									
Structural class Expresure class related to environmental conditions							3		
Structural class	XO	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3		
S1	10	10	10	15	20	25	30		
S2	10	10	15	20	25	30	35		
S3	10	10	20	25	30	35	40		
S4 (for 50 years)	10	15	25	30	35	40	45		
S5	15	20	30	35	40	45	50		
S6	20	25	35	40	45	50	55		

Laspan of the slab = R = 414m

Ø= 10mm for steel bars.

Acdev= 10 mm → technology allowance

minib = domm -> Good rechanical bond between

iteel & concrete ?min, dur -> we will

we class SH (for

50 years)

Now, according to the structural class table, with my concrete C 25/30, I should decrease class by

1 : Structural class Criterion Working life 80 increase class by 1 Working life 100 increase class by 2 years decrease class by 1 if concrete class is at least: Concrete class C35/45 C40/50 C40/50 C40/50 Member with slab decrease class by 1 Special quality decrease class by 1 ontrol of concret

Values of c _{min,dur} [mm]										
Structural class		Exposure class related to environmental conditions								
Structural class	XD	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3			
S1	10	10	10	15	20	25	30			
S2	10	10	15	20	25	30	35			
S3	10	10	20	25	30	35	40			
S4 (for 50 years)	10	15	25	30	35	40	45			
S5	15	20	30	35	40	45	50			
S6	20	25	35	40	45	50	55			

Finally, my Coninder = 10 mm

Crun = max { 10 mm; 10 mm; 10 mm} = 10 mm

1.3. Span/depth ratio (deflection control) $\lambda = \frac{1}{d} \leq \lambda \lim_{n \to \infty} K_{cs} K_{cs} \lambda d$, tab

 $\lambda_{ ext{\tiny d,tab}}$ for outer span of the continuous beam/slab

			Concrete class							
_	ρ	12/15	16/20	20/25	25/30	30/37	40/50	50/60		
\longrightarrow	0,5 %	19,0	20,5	22,1	24,1	26	33,5	41,5		
	1,5 %	15,9	16,4	16,9	17,6	18	19,5	20,8		

Kc1:1.0-0 Effect of snape

KC2 = 1.0 -> Effect of span

KC3=1.2 → Effect of Rainforcement

A, tab - TABLE

using p:05% di the outer span (more disadvantaged)

2

And,
$$\lambda = \frac{1}{d}$$
; $l = 4400 \text{ mm}$

$$\lambda = \frac{4400}{155} = 28'38$$

Because 22 Mint, 28'38 2 28'92 me can omitte detailed calculations of deflections

CONCUSION: The slab is designed with thickness 180 mm, cover depth 20mm, reinforcing bars diameter 10 mm. Its effective depth is 155 mm.

2. DESING OF THE BEAM 2.1. Empirical estimation

To reach sufficient stiffness of the beam:

Le = span of the boom

$$l_{8} = a = 5600 \text{ mm}$$
. So: $h_{8} = \left(\frac{1}{12} - \frac{1}{10}\right) \cdot 5600$
 $h_{8} = \left(466'67 \sim 560\right) \text{ mm}$

From before, I obtened hs = 180 mm. So, if we want to fullfill the condition of stiffness:

2'5.hs = 2'5. 180 = 450 mm < 560 mm /

50, we take he= 600 mm (Rounding to somm)

→ $b_8 = (\frac{1}{3} - \frac{2}{3}) \cdot h_8 = (\frac{1}{3} - \frac{2}{3}) \cdot mm$

b8 = (186'67 ~ 373'33) mm.

Rounding to 50mm > b8 = 400 mm

3. PRELIMINARY CHECK OF THE BEAM

We read to calculate the theoretical maximum values of internal forces for the three differents loads:

1. permanent load of hypical floor: (g-go)floor, K = 1'1

2. permanent load of the roofi(g-go) roofik= 1'9 KN/m2

3. Life load of typical floor: 9floor, K = 2'9 KN/m2

4. Life load of the roof: groop, K= 0'75 KN/m2

for permanent load, the partial safety coefficients for actions (ULS) is Y=1'35; and for variable load is Y=1'5. for unfavourable effect.

I will begin with	LOAD from	a FLOOR	SLAB
PERMANENT	K-value [KN/m²]	۴	d-value [KN/m²]
Self-weight 25 KN m3. 0'18 m	415	1'35	6'075
(9-90) floor, K	1'1	1'35	1'485
VARIABLE Live: 9floor, K	2'9	1'5	4'35
4 12 (7)	8'5 KN/m	2	11'91 KN/m2

o Total value of load of a floor structure is 8'5 KN/m². For further calculations the design value of 11'91 KN/m² will be use.

Now, the LOAD of the ROOF but without the self-weight

PERMANENT	K-value EKNIM²]	Y	d-value CKN/m2J
(9-90)roof, K	1'9	1'35	2'565
Self-Weight: 25 VARIABLE	M3.0'18 4'5	1'35	6'075
Live: groof, K	0'75	1'5	1'125
1100Liv	7'15KN/M	ارچ ا	9'765KN/m21

The total value of load of the roof structure is 7'15 KN/m2. For further calculations the desing value it will be use it's 9'765 KN/m2

Now, to obtain for the load of one floor is going to be multiply by the loading width of the beam:

The span of the beam: L=a= 4'4m

50: 11'91 KN , 4'4m = 52'4 . KN/m

And the self-weight of the beam: 10'6-0'18):0'4-25-1'35 = 5'67 KN/M

So, fb=52'4+5'67= 58 KN/M

Ved, max = 203 KN

3.2. Preliminary check of bending (3)

a diameter of the rebars 20mm (\$=20mm) and a minimum cover depth of 20 mm (c=20mm)

1 MPa = 1000 KN/m2

For de 17 is consider

of rebars 16-22 mm

I will take 20 mm

that the diameter

Therefore: $y = \frac{Med, max}{b, d^2, lod} = \frac{1.227.14}{0.4.0.57^2, 16.676}$

M= 014, so looking in the table ;

Section 1		The Paris		1 🗸 1	
		μ	ω	ξ	ζ
ô	Ó.	0,090	0,0945	0,118	0,953
	\rightarrow	0,100	0,1056	0,132	0,947
1		0,110	0,117	0,146	0,942
5.70		0,120	0,128	0,160	0,936
1/22		0,130	0,140	0,175	0,930

至=0'132

0132= \$ 40'15 ha and 10r ba should be decrease.

$$132 = \frac{3}{3} = \frac{227'4}{0'35.0'572.16'67e^3} = 0'121$$

From before, we know fyd = 434'78 MPa and we take & from the table:

al al		T		
	μ	ω	ξ	ζ,
47, 14	0,090	0,0945	0,118	0,953
1	0,100	0,1056	0,132	0,947
6 974	0,110	0,117	0,146	0,942
\rightarrow	0,120	0,128	0,160	0,936
V 1	0,130	0,140	0,175	0,930

3.4. Preliminary check of load-bearing capacity in Shear (compression diagonals)

coto = 1'5 because cracks open at 45°

Same procedure than the span

3.5. Deflection control.

$$\lambda = \frac{1}{dB} = \lambda \iota \iota m = Kc_1 Kc_2 Kc_3 \lambda d$$
, tab
 $l_8 = a = 5600 mm$
 $d_8 = h_8 - c - 9/2$

KC1=1.0 , Effect of shape Kcz=1.0 - Effect of span Kc3=1.2 = Effect of reinforcement

Aditab - TABLE for outer span with Ps, rgd calculated

λ= 5600 = 9'824

-> Lad, tab for B, rgd = 0'005

0'5/ - 24'1 15% - 176

1 - 6'5

 $\lambda_{\rm d,tab}$ for outer span of the continuous beam/slab '495- 3'2135

	Concrete class								
ρ	12/15	16/20	20/25	25/30	30/37	40/50	50/60		
0,5 %	19,0	20,5	22,1	24,1	26	33,5	41,5		
1,5 %	15,9	16,4	16,9	17,6	18	19,5	20,8		

Aad, tab = 27/3 (interpolating)

50: Dlimt = 1'0.1'0.1'2. 27'3 = 32'8

λ=9'03 = limt = 32'8 / condition checked.

conclusion: The beam is designed with thickness 600 mm and a with of 350 mm

From previous calculations (Page 4)

(hB-hs).bB.25KN

4.1. Loads

FLOOR desing load = 11'91 KN/m2 2007 desing load = 9'765 KN/m2

Tributing area A=4'4 × 5'6 = 24'64m2

Load from the slab

7. 24'64m2. 11'91 KN/m2 = 293'5 KN FX Expical Floor 1.24'64m2 - 9'765KN/m2 = 240'6 KN 1x roof 53411KN

Load from the beam

(0'6-0'18).0'5.25 KN/m3 = 0'235.25 = 5'875 KN/m

(44+ 56)m. 5186 KN/m = 58175 KN

x 7 floors

411' 25 KN

Estimated self weight of the column = 25 kN

- NEd = 534'1+ 411'25 + 25 = 970'4 KN

Estimation for Ts = 400 HPa

$$Ac \ge \frac{970^{1}4}{0'8.46'67e^{3} + 0'02.400e^{3}}$$

4.2.2. Check the condition:

So the dimensions of the column;

 $As \simeq 0'02 \cdot Ac$ (Eshmation)

