$1^{\text {Sr }}$ TASK: FRAME STRUCTURE

DATA

$$
\begin{gathered}
R=4^{\prime} 4 \mathrm{~m} ; a=5^{\prime} 6 \mathrm{~m} ; h=3^{\prime} 9 \mathrm{~m} ; n=7 \\
\left(g-g_{0}\right)_{f l o o r, N}=1^{\prime} 1 \mathrm{kN} / \mathrm{m}^{2} ;\left(g-g_{0}\right)_{\mathrm{rop} f_{1}}=1^{\prime} 9 \mathrm{kN} / \mathrm{m}^{2} .
\end{gathered}
$$

$q_{f l o o r, k}=2 \prime 9 \mathrm{kN} / \mathrm{m}^{2} ; P: \times \subset 1 ; z: 50$ years

Concrete: C25/30
steel: B500

$$
q_{\text {roof, }}=0^{\prime} 75 \mathrm{kN} / \mathrm{m}^{2}
$$

weight of the concrete $=25 \mathrm{kN} / \mathrm{m}^{3}$

1. Depth of the slab (ONE-MAY sLAB)
1.1. Empirical estimation: $h s=\left(\frac{1}{30} \sim \frac{1}{25}\right) \cdot l$

$$
\begin{aligned}
& h_{s}=\frac{1}{30} \cdot 4400=146^{\prime} \mathrm{mm} \\
& h_{s}=\frac{1}{25} 4400=176 \mathrm{~mm}
\end{aligned}
$$

$h_{s}=150 \mathrm{~mm}-180 \mathrm{~mm}$. (Ruined slab dimension to 10 mm)
I mill use $h \mathrm{~h}=180 \mathrm{~mm}$ (for bigger loads)
1.2. Effective depth $(d): d=h s-c-\frac{\phi}{2}$
1.2.1. $c=C_{\text {min }}+\Delta c d e v$
$C_{\text {min }}=\max \left(C_{\text {min }}, b ; C_{\text {min }}\right.$.dur $\left.; 10 \mathrm{~mm}\right)$
Δc lev $=10 \mathrm{~mm}$.
Cmen,b $=10 \mathrm{~mm}$
Cinder: with 54 and $X \in 1 \rightarrow$ Cmin,dur $=15 \mathrm{~mm}$

Now, according to the smuctural class table, with my concrete c25/30, I should decrease class by

Finally, my $C_{\text {minder }}=10 \mathrm{~mm}$
$C_{\text {mun }}=\max \{10 \mathrm{~mm} ; 10 \mathrm{~mm} ; 10 \mathrm{~mm}\}=10 \mathrm{~mm}$

$$
\begin{aligned}
& c=C_{\text {min }}+\Delta c_{\text {lev }} \\
& c=10+10 \\
& c=20 \mathrm{~mm} \\
& \rightarrow d=h s-c-\frac{\phi}{2} \\
& d=180-20-5 \\
& d=155 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& K_{C 1}=1.0 \rightarrow \text { Effect of } \\
& \text { shape }
\end{aligned}
$$

$$
K C_{2}=1.0 \rightarrow \text { Effect of span }
$$

$$
K C_{3}=1.2 \rightarrow \text { Effect of }
$$ Reinforcement λ, tab \rightarrow TABLE

\dot{i}
using $p: 0^{\prime} 5 \%$ the outer span (more disadvantaged)

1.3. Span/depth ratio (deflection control)

$$
\lambda=\frac{1}{d} \leq \lambda \operatorname{lem}=K_{c_{3}} K c_{2} K c_{3} \lambda d_{1} t a b
$$

$\lambda_{\mathrm{d}, \text { tab }}$ for outer span of the continuous beam/slab

	Concrete class						
ρ	$12 / 15$	$16 / 20$	$20 / 25$	$25 / 30$	$30 / 37$	$40 / 50$	$50 / 60$
$\mathbf{0 , 5} \%$	19,0	20,5	22,1	24,1	26	33,5	41,5
$1,5 \%$	15,9	16,4	16,9	17,6	18	19,5	20,8

$$
\begin{aligned}
\lambda_{d_{1}, a b}=24^{\prime} 1 . \rightarrow \lim & =1 \times 1 \times 1^{\prime} 2 \times 24^{\prime} 1 \\
\lambda l \mathrm{~m} & =2 s^{\prime} 92 \mathrm{~mm}
\end{aligned}
$$

Inspan of the slab And, $\quad \lambda=\frac{1}{d} ; \quad 1=4400 \mathrm{~mm}$

$$
\lambda=\frac{4400}{155}=28^{1} 38
$$

Because $\lambda<\lambda$ lent, $23^{\prime} 38<28^{\prime} 92$ we can mite detculed calculations of deflections
CONCluSion: The slab is designed with thickness 180 mm , cover depth 20 mm , reinforcing bars diameter 10 mm . Its effective depht is 155 mm .
2. DESING OF THE BEAM 2.1. Empirical estimation

$$
h_{B}=\left(\frac{1}{12} \sim \frac{1}{10}\right) L_{B} ; \quad b_{B}=\left(\frac{1}{3} \sim \frac{2}{3}\right) h_{B}
$$

To reach sufficient stiffness of the beam:

$$
h_{B} \geq 2 \prime 5 h_{S}
$$

$L_{8}=$ span of the beam $L_{b}=a$

For permanent safety coefficients for actions (ULS) is $Y=1^{\prime} 35$; and for variable load is $Y=1 ' 5$. for unfavourable effect.

I will begin with LOAD from a FLCOR SLAB

- Total value of load of a floor structure is $8^{\prime} 5 \mathrm{kN} / \mathrm{m}^{2}$. For further calculations the design value of 11'91 $\mathrm{kN} / \mathrm{m}^{2}$ will be use.
NOM, the LOAD of the ROOF but without the self-meight

- The total value of load of the roof structure is $7^{\prime} 15 \mathrm{KN} / \mathrm{m}^{2}$. For further calculations the dosing value it will be use it's q'765 $\mathrm{KN} / \mathrm{m}^{2}$

Now, to obtain - f_{6}, the lead, of one floor is going to re muinply by the loading undth of the beam:

The span of the beam: $L=a=4^{4} 4 \mathrm{~m}$

$$
\text { The span of the beam } 11^{\prime} 91 \frac{k N}{m^{2}} 4^{\prime 4 m}=52^{i} 4 . \mathrm{kN} / \mathrm{m}
$$

And the self-weight of the beam:

$$
\left(0^{\prime} 6-0^{\prime} 18\right) \cdot 0^{\prime} 4 \cdot 25 \cdot 1^{\prime} 35=\overline{5^{\prime} 67} \mathrm{kN} / \mathrm{M}
$$

So, $f_{b}=52^{\prime} 4+5^{\prime} 67 \cong 58 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
& \text { Med, max }=\frac{1}{8} \cdot f_{B} \cdot I_{B}^{2} \\
& M_{E d, \text { max }}=\frac{1}{8} \cdot 53 \cdot 3^{\prime} 6^{2} \\
& M_{E d, \text { max }}=227^{i} \cdot 4 \cdot \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$V_{E d, \text { max }}=\frac{5}{8} f_{B} \cdot I_{B}$
$V_{E d, \max }=\frac{5}{8} \quad 58 \cdot 5^{\prime} 6$
$V_{E d, \text { max }}=203 \mathrm{kN}$
3.2. Preliminary check of bending (ξ)

$$
\rightarrow M=\frac{M_{E d_{1} \max }}{b_{B} \cdot d_{B}^{2} \cdot f_{c d}}
$$

PREVIOUS CONSIDERATIONS

$$
\begin{aligned}
\text { 1. } C 25130 & \wedge f_{c k}=25 \mathrm{MPa} \\
\text { 2. } \mathrm{f} 500 & =\frac{25}{1^{\prime} 5}=16^{\prime} 67 \mathrm{MPa} \\
\rightarrow f_{y k} & =500 \mathrm{MPa} \\
f_{y d} & =\frac{500}{1^{\prime} 15}=434^{\prime} 78
\end{aligned}
$$

3. Effective height of the beam (db.) considering a diameter of the rebars $20 \mathrm{~mm}(\phi=20 \mathrm{~mm}$) and a minimum cover depth of $20 \mathrm{~mm} \quad(C=20 \mathrm{~mm})$.

$$
\begin{aligned}
& d_{B}=h_{B}-c-\phi / 21 \\
& d_{B}=600-20-20 / 2 \\
& d_{B}=570 \mathrm{~mm}=0.57 \mathrm{~m}
\end{aligned}
$$

Therefore: $\quad y=\frac{M_{E d, \max }}{b_{B} \cdot d_{B}^{2} \cdot f_{c d}}=\frac{1227^{\prime} .4}{0^{\prime} 4 \cdot 0^{\prime} 57^{2} \cdot 16^{\prime} 67 e^{3}}=0^{\prime} 1$
$y=0^{\prime} 4$, so looking in the table:

μ	ω	ξ	ξ
	0,090	0,0945	0,118
0,100	0,1056	0,132	0,947
0,110	0,117	0,146	0,942
0,120	0,128	0,160	0,936
0,130	0,140	0,175	0,930

$$
\xi=0^{\prime} 132
$$

$0^{\prime} 13=\xi<0^{\prime} 15$ his andior b_{3} should be decease.
so with $b_{B}=0^{\prime} 35 m \rightarrow y=\frac{227^{\prime} 4}{0^{\prime} 35 \cdot 0^{\prime} 572.16^{\prime} 67 e^{3}}=0^{\prime} 12$

$$
y=0^{\prime} 12 \rightarrow \xi=\begin{gathered}
o^{\prime} 16 \\
4
\end{gathered} 0^{\prime} 15<\xi=0^{\prime} 16<0^{\prime} 4
$$

3.3. Preliminary check of reinforcement ratio

$$
P_{s, r q d}=\frac{\frac{M_{E d, m a x}}{\int d_{B} \cdot f y d}}{b_{B} d_{B}} \leqslant 0^{\prime} 04
$$

From before, we know fyd $=434^{\prime} 78 \mathrm{MPa}$ and we take ζ from the table:
$\cot \theta=1^{\prime} 5$ because cracks open at 45°

Same procedure than the span

$$
\zeta=0.936
$$

$$
\text { So: } p_{\text {r, rad }}=\frac{\frac{227^{\prime} 4}{0^{\prime} 920^{\prime} 57 \cdot 434^{\prime} 78 e^{3}}}{0^{\prime} 350^{\prime} 57}=0^{\prime} 005 \leq 0^{\prime} 04
$$

3.4. Preliminary check of load-bearing capacity in shear (compression diagonals)

$$
\begin{aligned}
& V \text { Vd, max }=\checkmark \cdot f_{c d} \cdot b_{B} \cdot \zeta \cdot d_{B} \cdot \frac{\cot \theta}{1+\cot \theta^{2}} \geqslant V E d \text { max } \\
& V=0^{\prime} 6\left(1-\frac{f_{c k}}{250}\right) \\
& V_{\text {Rd, max }}=0^{\prime} 6\left(1-\frac{25}{250}\right) \cdot 16^{\prime} 61 e^{3} \cdot 0^{\prime} 35 \cdot 0^{\prime} 930^{\prime} 57 \cdot \frac{1^{\prime} 5}{1+1^{\prime} 5^{2}} \\
& V_{\text {Rd, max }}=775^{\prime} 8 \mathrm{kN} \geqslant V_{\text {md, max }}=334 \mathrm{kN}
\end{aligned}
$$

3.5. Deflection control.

$$
\begin{aligned}
& \lambda=\frac{1}{d_{B}} \leq \lambda \mu m=K c_{1} K c_{2} K c_{3} \lambda d_{1}, t a b \\
& l_{B}=a=5600 \mathrm{~mm} \\
& d_{B}=h_{B}-c-\varnothing / 2 \\
& d_{B}=600-20-20 / 2
\end{aligned}
$$

$$
d_{B}=570 \mathrm{~mm}
$$

4.2. $\mathrm{NRd}=0^{\prime} 8 \cdot \mathrm{Ac} \cdot \mathrm{fcd}+\mathrm{As}^{2} \cdot \sigma_{s} \geq \mathrm{NEd}$

$$
\text { 4.2.1. } \quad A c \geq \frac{N E d}{0^{\prime} 8 \cdot f c d+0^{\prime} 02 \sigma_{s}}
$$

Estimation for $\sigma_{S}=400 \mathrm{MPa}$

$$
\begin{aligned}
& A c \geq \frac{970^{\prime} 4}{0^{\prime} 8 \cdot 16^{\prime} 67 e^{3}+0^{\prime} 02 \cdot 400 e^{3}} \\
& A c \geq 0^{\prime} 045 \mathrm{~m}^{2} \quad \text { (minimum area) }
\end{aligned}
$$

4.2.2. Check the condition:

$$
A S=0^{\prime} 02 \cdot A C
$$ (Estimation)

$$
\begin{aligned}
& N_{R d}=0^{\prime} 8 \cdot 0^{\prime} 045 \cdot 16^{\prime} 67 e^{3}+0^{\prime} 02 \cdot A c \cdot 400 e^{3} \\
& \quad N_{R d}=960^{\prime} 12 \mathrm{kN} \neq N E d=970^{\circ} 4 \mathrm{kN}
\end{aligned}
$$

So the dimensions of the column:

$$
250 \mathrm{~mm} \times 250 \mathrm{~mm}
$$

