HoMEWORK 10-CMO1 Engin Ayden Ez

TASK S: REINFORCED CONCRETE STAIRCASE

1. Design of dimensions of reinforced concrete staircase

Assignment
\rightarrow Height of the floor $h_{k}=3700 \mathrm{~mm}$
\rightarrow depth of the main slat $h s=210 \mathrm{~mm}$
\rightarrow Depth of floor structure $\mathrm{hf}-150 \mathrm{~mm}$
\rightarrow Thickness of cladding of the star $h_{c}=30 \mathrm{~mm}$
Dimensions of the staircase
\rightarrow Ideal height of ore step is 170 mm
$\rightarrow 3700 / 170=21,76 \rightarrow 22$ steps $(2$ flights with 11 steps)
\rightarrow Height of ore step $h=3700 / 22=168 \mathrm{~mm}$
\rightarrow width of one step $b>630-2 h=630-2 \times 168=294 \mathrm{~mm}$
\Rightarrow DESIGN $=$ staircase with $168 / 295 \mathrm{~mm}$ steps, 2 flights, 11 steps in each flight
\rightarrow width of the flight -1100 mm (in general, 1100 mm is the minimum width of the flight ।
\rightarrow Width of the gap between the flights -200 mm (common value)
\rightarrow Width of the landing - 1200 Cshould be at least "width of the flight +100 mm)
\rightarrow Width of the staircase is $1100 \times 2+200=2400 \mathrm{~mm}$
\rightarrow Slope of the staircase is $\alpha=\arctan (168 / 295) \simeq 29,66^{\circ}$

Scheme of the staircase

Preliminary check of the depth of the slab

- The staircase is considered as ore wag slat with span of 4445 mm . The slab will be supported \Rightarrow the depth should be at least $4445 / 25=177,8 \mathrm{~mm}$
- The depth of ladings is the same as the depth of the main slab 210 mm .
- The depth of flights 199 mm
$210 \mathrm{~mm}>177,8 \mathrm{~mm}$ and $199 \mathrm{~mm} \times 177,8 \mathrm{~m}$ OK!
Perpendicular and head clearance of the staircase
M Head clearance of the staircase shall le more then $1500+\frac{750}{\cos \alpha}$
$=1500+\frac{750}{\cos (29,66)} \simeq 2363 \mathrm{~mm}$ and more than 2600 mm
- Head clearance of our staircase is $h_{1}=h_{k}-h_{s}-h_{f}-h$

$$
\Rightarrow h_{1}=3700-210-150-168
$$

- Perpendicular clearance of the staircase should be more than. $750+1500 \times \cos \alpha=750+L 500 \times \cos (29,66)=2053 \mathrm{~mm}$ and mare then 1900 mm
- Perpendicular clearance of our staircase is $h_{2}=h_{1} \cos \alpha=3172 \cdot \cos (2,64)$

$$
\begin{aligned}
&=2756 \mathrm{~mm} \\
& \times 2053 \mathrm{~m}
\end{aligned}
$$

2. Colculations of loads

Larding

Flight

Load	Char. Volue.[KN/m²]	γ_{F}	Design Valve [KN $\left./ \mathrm{mm}^{2}\right]=$
Slat	$\frac{0,199}{\cos (29,66)} \times 25$	1,35	7,73
Cladding	$0,5 \cdot \frac{168+295}{295}$	1,35	1,06
Steps	$\frac{0,168}{2} \cdot 25$	1,35	2,83
Live load	3,5	1,5	5,25

3. Design bending moment

$$
M_{E d}=\frac{1}{12} \mathrm{fdf} \cdot l^{2}=\frac{1}{12} \times 16,87 \times 4,445^{2}=27,78 \mathrm{kNm}
$$

4. Calculation of resiforcement

$$
\begin{aligned}
& d_{1}=h_{1}-c-\frac{\phi}{2}=210-25-\frac{10}{2}=180 \mathrm{~mm} \\
& d_{2}=h_{2}-c-\frac{\phi}{2}=199-25-\frac{10}{2}=169 \mathrm{~mm}
\end{aligned}
$$

We keep the smallest effective depth $d=169 \mathrm{~mm}$. Because we use the some reinforcement for the lending and flight. The smallest effective depth allows us to be conservative. although if's sot economic,

$$
\begin{aligned}
& \text { as,rqd }=\frac{\text { MEdmax }}{0,9 \cdot d \cdot f y d}=\left(\frac{27,78 \times 10^{3}}{0,9.0,169 \times 435 \times 10^{6}}\right) \times 10^{4} \simeq 4,20 \mathrm{~cm}^{2} \\
& a_{s, m i n}=\max \left(0,26 \frac{f c t_{m}}{f y y_{y}} \cdot 6_{s} \cdot d_{s}\right. \\
& =\max _{x}\left(0,26 \frac{2,9}{500} \cdot 1,1 \cdot 0,169 ; 0,0013.1,1.0,169 .\right) \times 1 \\
& =\max (2,80 ; 2,42)=2,80 \mathrm{~cm}^{2} \text { <as, ind OK! }
\end{aligned}
$$

DESIGN: $\phi 10$ with spacing of $183 \mathrm{~mm} \quad(6 \times \phi 10)$

$$
\text { as, prov }=474 \underset{\mathrm{~mm}^{2}}{>} \text { as, } 19 \mathrm{~d}\left(420 \mathrm{~mm}^{2}\right) \text { ok! }
$$

Cheek of the design

$$
\begin{align*}
& x=\frac{\text { as, prov fad }}{0,8.6 \mathrm{f} \cdot \mathrm{fed}}=\frac{474 \times 1035}{0,8 \cdot 1,1 \times 20 \times 10^{6}} \times 10^{3} \simeq 11,71 \mathrm{~mm} \\
& z=d_{B}-0,4 \times \\
& =169-0,4 \cdot 11,71 \simeq 164,32 \\
& M_{R d}=\text { as, prov } \cdot \text { fad. } z=(474 \times 435 \times 0,16432) \times 10^{-3} \\
& \quad 33,8,8>\operatorname{MEd}(27,78 \mathrm{LNm}) 0 \mathrm{~K}! \tag{4}
\end{align*}
$$

5. Detailing roles

$$
\xi=\frac{x}{d}=\frac{11,71}{169}=0,069<0,45 \text { ok! }
$$

Spacing of rebers

$$
\begin{aligned}
& S \operatorname{smin}(2 \mathrm{hs} ; 250 \mathrm{~mm}) \\
& \leq \min (2 \times 19 \mathrm{~g} ; 250 \mathrm{~mm})=250 \mathrm{~mm} \times 483 \mathrm{~mm} \text { OK! }
\end{aligned}
$$

6. Sketch of reinforcement

Edge reinforcement

Transverse reinforcement

$$
\begin{aligned}
& a_{s, t}, t r \geqslant 0,25 . \text { as, main } \\
& \geqslant 0,25 \times 474 \approx 119 \mathrm{~m}^{2} / \mathrm{m} \\
& S G \in \min (3 h ; 600 \mathrm{~mm}) \\
& \leq \min (3,210 ; 200 \mathrm{~mm})=400 \mathrm{~mm}
\end{aligned}
$$

DESIGN: $\phi 8$ with spacing of 400 mm

$$
\begin{gathered}
\text { cos prover }=12 \mathrm{~s} \mathrm{~mm}^{2}>\text { as, } \operatorname{tr}\left(119 \mathrm{~mm} \mathrm{~m}^{2} / \mathrm{m}\right) \\
\left(\frac{1000}{4} \times \mathrm{somm}^{2}\right)
\end{gathered}
$$

