Task 3: Design of reinforcement

1. Bending reinforcement P_{1}

$$
\begin{aligned}
& \left|M M_{E d_{1} \text { red }}\right|_{1}\left|=\left|\pi n_{E d_{, F E M}}\right|-\left|V_{E d_{1}} \|_{\text {FEM }}^{1}\right| ~\right| \frac{b_{\text {SOP }}}{2} \\
& =304,1-356,6 \times \frac{0,4}{2} \simeq 232,78 \mathrm{LM} \mathrm{Mm}_{\mathrm{m}} \\
& \left|M_{E d_{1} r e d}\right|=\left|M n_{E d_{1} F E M}\right|=293,5 \mathrm{ZN} \cdot \mathrm{~m} \\
& \mid M_{E d,}, \text { red } 3\left|=\left|M_{E d_{, ~ F E M ~}^{3}}\right|-\left|V_{E d_{1} F E M n}\right| \cdot \frac{6 \text { sip }}{2}\right. \\
& =494,7-412,4 \times \frac{0,4}{2}=412,22 \mathrm{kN} \cdot \mathrm{~m} .
\end{aligned}
$$

$$
\begin{aligned}
& A_{s, r q d_{1}}=\frac{M_{E d_{1}}}{z_{0} \cdot f g d}=\frac{M_{E} d_{1}}{0,9 d_{E} \cdot f g d} \\
& d_{B}=h_{B}-\frac{\phi}{2}-\phi_{s w}-c \\
& =600-\frac{16}{2}-8-25=559 \mathrm{~mm} \\
& f_{g} d=\frac{f_{g} t}{\gamma_{s}}=\frac{500}{1,15}=435 \mathrm{MPa} \\
& -A_{s, r q} d_{1}=\left(\frac{232,78 \times 10^{3}}{0,9 \times 0,559 \times 635 \times 106}\right) \\
& \text { altin raqup elat } \\
& \text { GIIHHQIEDMIQROH URXSI } \\
& \text { RIUEDVMMMMDORIP SUFFUTFD }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GDP HMWILQRQ-EHDPI } \\
& \text { ', ZRXOXWHIMMITIP P IEDWI } \\
& \text { IIIIEDWMOFLRMMFUROMIIDQ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LQROHOM H }
\end{aligned}
$$

$$
\begin{aligned}
& \text { VRP HDQQZDCFHIQWM-FKFNNI } \\
& \text { I RXZ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P LQP XP IVSDFLG } \\
& \text { แाXIUP HQND } \\
& \text { <RXIKDNHWMRTRMEIQUHMIII }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P P IDCGIUPQEEDMLIROHOU HU }
\end{aligned}
$$

$$
\begin{aligned}
& d_{3} \text { EXVME LQKDHYYPP H }
\end{aligned}
$$

$$
\begin{aligned}
& 1.1 \text { Check of the design }
\end{aligned}
$$

$$
\begin{aligned}
& z=d_{B}-0,4 x \\
& \text { DFWDZGOM QHGGDP HAMRD } \\
& =55,9-0,4 \cdot 11,4=51,34 \mathrm{~cm} \\
& \text { - } M_{R d_{1}}=A_{s, p r o v}^{1} \cdot f y d . z \\
& \text { VRTM HVIISRMEQIQ }
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {Edred }}<M_{\text {Rd }} 1 \\
& \left(232,78 \omega_{\mathrm{m}}\right)<(280,7 \mathrm{w} \mathrm{Nom})
\end{aligned}
$$

$b_{\text {eff }}=\sum$ beff $_{1} i+b_{B} \leqslant 6$

$b_{\text {eff, } 1}=b_{\text {effe }}=0,2 b_{1}+0,1 l_{0} \leqslant 0,2 l_{0}$ $0,2 \times 2,55+0,1 \times 0,85 \times 6,9 \leq 0,2 \times 0,85 \times 6,9$ $1,0965 \leqslant 1,173$ Checked V beff $1 / 2<b_{1 / 2} \quad$ chected $(1,0965)<(2,25) \mathrm{m}$

$$
\begin{aligned}
& \text { beff }=(2 \times 1,0965)+0,30 \leqslant 5,4 \\
& =2,49<5,4 \text { cloced } V \\
& \text { Leff }=2,49 \mathrm{~m} \\
& \begin{aligned}
-x_{2}=\frac{\text { As, prov. } 2 \cdot t y d}{0,8 \cdot \text { beff. } \cdot f \mathrm{~cd}}=\frac{14,20 \times 10^{-4} \times 435}{0,8 \times 2,49 \times 20} & \simeq 0,0155 \\
& =1,5 \mathrm{~cm}
\end{aligned} \\
& z=d_{B}-0,4 x \\
& =55,9-0,4 \cdot 1,5=55,3 \mathrm{~cm} \\
& \mathrm{MRO}_{1} 2=\text { As, prov. } \cdot \mathrm{Fgd} \mathrm{~Hz} \\
& =\left(14,20 \times 10^{-4} \times 435 \times 10^{6} \times 0,553\right) \times 10^{-3} \simeq 341,6 \mathrm{kN} \cdot \mathrm{~m} \\
& \begin{array}{|cc|}
\hline M_{E d r e d, 2} & <M_{\mathrm{RJ}, 2} \\
(293,5 & (341,6 \mathrm{Nom}) \\
\left.2 N_{\mathrm{m}}\right) & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -x_{3}=\frac{\text { Aspprov }_{3} \cdot \mathrm{fyd}}{0,8 \cdot 6 \mathrm{~B} \cdot \mathrm{fcd}}=\frac{20,61 \times 10^{-4} \times 435}{0,8 \times 0,30 \times 20} \simeq 0,1867 \\
& Z=d_{B}-0,4 x=55,9-0,4 \cdot 18,7 \\
& \simeq 48,4 \mathrm{~cm} \\
& M_{R d} d_{3}=\text { Asprov } 3 \text { - fyd. } z \\
& =\left(20,61 \times 10^{-4} \times 435 \times 10^{6} \cdot 0,484\right) \times 10^{-3} \simeq 434 \mathrm{kNom} \\
& \begin{array}{l}
\text { MEdred }_{3}<M_{R d_{1}, 3} \\
(412,22) \quad(436 . \operatorname{m} . \mathrm{m})
\end{array}
\end{aligned}
$$

1.3 Detailing rules

$$
\begin{aligned}
& \xi_{1}=\frac{x 1}{d_{B}} \leqslant \min \left(\xi_{b d_{1} L}=\frac{700}{700+\mathrm{fgd}} ; 0,45\right) \\
& =\frac{11,4}{55,9} \leqslant 0,45 \Leftrightarrow 0,20<0,45 \text { checked: } \\
& \xi_{2}=\frac{x_{2}}{d_{B}} \leqslant 0,45 \Leftrightarrow \frac{1,5}{55,9} \leqslant 0,45 \Leftrightarrow 0,03<0,45 \\
& \xi_{3}=\frac{x_{3}}{d_{B}} \leqslant 0,45 \Longleftrightarrow \frac{18,7}{55,9} \stackrel{?}{\leqslant} 0,45 \Leftarrow 0,33<0,45 \text { Chectal. } \\
& A_{\text {smin }}=\max \left(0,26 \cdot \frac{f+t_{m}}{f g k} b_{B} \cdot d_{B} ; 0,0013 b_{B} \cdot d_{B}\right) \times 10^{4} \\
& =\max \left(0,26 \cdot \frac{2,9}{500} \cdot 0,30 \cdot 0,559 ; 0,0013 \cdot 0,30.0,559\right) \\
& =\max \left(2,53 \mathrm{~cm}^{2} ; 2,18 \mathrm{~cm}^{2}\right)=2,53 \mathrm{~cm}^{2} \\
& \left.\begin{array}{l}
\text { Asprov } 1=12,57 \mathrm{~cm}^{2} \\
A_{\text {sprov2 }}=14,20 \mathrm{~cm}^{2} \\
A_{\text {sprov }_{3}}=20,61 \mathrm{~cm}^{2}
\end{array}\right\}>A_{s_{m i n}}\left(2,53 \mathrm{~cm}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Asmax } & =0,04 \cdot 6 B \cdot d_{B} \times 10^{4} \\
& =0,04 \times 0,30 \times 0,559 \times 10^{4}=67,08 \mathrm{~cm}^{2} \\
\text { Asprov } 1 & =12,57 \mathrm{~cm}^{2} \\
\text { Asprov } 2 & =14,20 \mathrm{~cm}^{2}\left\{<A_{\text {smax }}\left(67,08 \mathrm{~cm}^{2}\right) .\right. \\
A_{\text {sprov }}^{3} & =20,61 \mathrm{~cm}^{2}
\end{aligned}
$$

Section 1

$$
\begin{aligned}
s_{a} & =\frac{6_{B}-2 c-2 \phi_{S} t-\phi}{n-1} \\
& =\frac{300-2 \times 2 s-2 \times 8-20}{4-1}
\end{aligned}
$$

$\cong 71 \mathrm{~mm}$

$$
S_{c}=S a-\phi
$$

$$
=71-20=51 \mathrm{~mm}
$$

$$
\begin{aligned}
S_{\text {amax }} & =\min \left(2 h_{B} ; 250 \mathrm{~mm}\right) \\
& =\min (2 \times 600 ; 250 \mathrm{~mm}) \\
& =250 \mathrm{~mm}>71 \mathrm{~mm} \text { chected! } \\
S_{\text {c,min }} & =\max (20 \mathrm{~mm} ; 1,26) \\
& =\max (20 \mathrm{~mm} ; 1,2 \times 20) \\
& =24 \mathrm{~mm}<51 \mathrm{~mm} \quad \text { clected! }
\end{aligned}
$$

Section 2

$$
\begin{aligned}
S_{c, m i n} & =\max (20 \mathrm{~mm} ; 1,2 \phi 18) \\
& =\max (20 \mathrm{~mm} ; 1,2 \times 18)=21,6 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& S_{a}=\frac{b_{B}-2 c-2 \phi s+\phi_{18}}{4-1} \\
& =\frac{300-2 \times 25-2 \times 8-18}{4-1} \\
& =72 \mathrm{~mm}\left\langle 5 Q_{, ~ m a x}(250 \mathrm{~mm})\right. \\
& S_{c}=S_{a}-\bar{q}_{18} \\
& =72-18=\underline{S G \mathrm{~mm}}>S_{\mathrm{c}, \min }(21,6 \mathrm{~mm}
\end{aligned}
$$

Section 3

,IV RXIKDYHEDXIQTX RID HXI WKHOKKHDZREDVGIM LQ IDERYH

 EDUYIKRXIKDYHVMEXY-VKK-IRIP XOEEHOZ QE[MVKKHOXP EHURIEDYKQTKKHEXQGOTI

2. Shear reinforcement

$$
\phi_{\mathrm{n}}=\phi \sqrt{n_{\mathrm{b}}}
$$

$$
-\left|V_{E d_{3}}\right|=\left|V_{E d_{1}, \max _{1}, F E M_{3} \mid}\right| \frac{V-\left(\frac{b_{\text {sup }}}{2}+d_{B}\right)}{V}
$$

$$
V_{E d, 3} \simeq 327,8 \mathrm{kN}
$$

$$
-s_{1} \leqslant \frac{A s w \cdot f_{y d}}{V_{E d, 3}} \Delta l
$$

$$
\simeq 111,45 \mathrm{kN}
$$

$\left\{\begin{array}{l}A_{S_{w}}=\frac{n \pi \phi_{s w}{ }^{2}}{4}=\frac{2 \times \pi \times 8^{2}}{4}=100 \mathrm{~mm}^{2} \\ \Delta l=2 \times \operatorname{cotg} \theta=48,4 \times 1, S=72,6 \mathrm{~cm}\end{array}\right.$

$$
q=\frac{3566+412,4}{6,9}
$$

$$
y=\frac{356,6}{111,45} \simeq 3,20 \mathrm{~m}
$$

$$
v=6,9-3,2=3,70 \mathrm{~m}
$$

$s_{1} \leqslant\left(\frac{100 \times 435}{327,8 \times 10^{3}} \times 0,726\right) \times 10^{2}$
$S_{1} \leqslant 9,6 \mathrm{~cm}$
$-s_{1} \leqslant 0,75 \mathrm{~dB}=0,75 \times 55,9 \simeq 41,9 \mathrm{~cm}$
$S_{1} \leqslant 400 \mathrm{~mm}$
$S_{1} \geqslant 100 \mathrm{~mm}$
The cole of $s s \geqslant 100 \mathrm{~mm}$ is-'t satisfied. Therefore, we have to chage the diameter of stirrops.
with $\phi_{s w}=10 \mathrm{~mm}$

$$
\begin{aligned}
& A_{S w}=\frac{n \cdot \pi \cdot \sigma_{s w_{w}}}{4}=\frac{2 \cdot \pi \cdot 10^{2}}{4} \simeq 157 \mathrm{~mm}^{2} \\
& S_{1} \leq \frac{A_{s w} \cdot f_{g d}}{V_{E d, 3}} \cdot \Delta l=\left(\frac{157 \times 435}{327,8 \times 10^{3}} \times 0,726\right) \times 10^{2} \\
& S_{1} \leqslant 15,1 \mathrm{~cm} \quad\left\{\begin{array}{l}
S_{1} \leqslant 40 \mathrm{~cm} \\
S_{1} \leqslant 0,75 d_{B}=41,9 \mathrm{~cm} \\
S_{1} \geqslant 10 \mathrm{~cm}
\end{array}\right. \\
& S_{1}=15 \mathrm{~cm} \quad \text { Chected! }
\end{aligned}
$$

2.1Chect shear resistance

$$
\begin{aligned}
-V_{R d, S N, 1} & =\frac{A_{s w} \cdot f_{y} d}{S_{1}} \Delta l \geqslant V_{E d_{,}, 3} \\
V_{R d_{,}, S_{1} 1}= & \left(\frac{157 \times 435}{0,15} \times 0,726\right) \times 10^{-3} \simeq 330,5 \mathrm{kN} \\
& V_{E d, 3}<V_{R d, S w 1} \\
& (327,8 \mathrm{kN})<(330,5 \mathrm{kN})
\end{aligned}
$$

2.2. Cheak shear reinforcement ratio

$$
\begin{aligned}
& e_{\text {swmin }^{\prime}}=\frac{0,08 \times \sqrt{f_{\text {fek }}}}{f_{y t}}=\frac{0,08 \cdot \sqrt{30}}{500}=8,7 \times 10^{-4} \\
& e_{s_{\text {max }}}=\frac{0,5 v \cdot f \text { fod }}{f_{\text {gd }}} \text { with } v=0,6\left(1-\frac{\text { fck }}{250}\right) \\
& =\frac{0,5 \times 0,528 \times 20}{435} \quad=0,6\left(1-\frac{30}{250}\right)=0,528 \\
& =1,2 \times 10^{-2} \\
& e_{s_{w_{1}}}=\frac{A_{s w}}{b_{B s_{1}}}=\frac{1,57}{30 \times 15}=3,4 \times 10^{-3} \\
& e_{\text {smax }}>e_{s_{w_{1}}}>e_{\text {sumin }} \text { cheefed! }
\end{aligned}
$$

2.3 Stirrups in the middle port (sax)

$$
\begin{aligned}
S_{\text {max }} & \leq \min (0,7 d \mathrm{ds} ; 600 \mathrm{ml} \\
& \leqslant \min (0,75.55,9 ; 40) \\
S_{\text {max }} & \leqslant 61,9 \mathrm{~cm} \quad S_{\text {max }}=40 \mathrm{~cm}
\end{aligned}
$$

2.4 Cheek sheer reinforcement ratio

$$
\begin{aligned}
& e_{s w, \min }=\frac{0,08 \sqrt{\mathrm{fek}}}{\mathrm{fyk}}=8,7 \times 10^{-4} \\
& e_{S, \max }=1,2 \times 10^{-2} \\
& e_{s_{w, 2}}=\frac{A_{s w}}{b_{B} s_{\text {max }}}=\frac{1,57}{30 \times 60} \simeq 1,3 \times 10^{-3}
\end{aligned}
$$

$e_{s_{w, \text { min }}}<e_{s_{W_{2}}}<e_{s m o x}$ checked!

- Shear force for which smax is sufficient

$$
\begin{aligned}
& \begin{aligned}
V_{R d, \text { min }}=\frac{\text { Aswofgd }}{\text { max }} \Delta l \quad \text { with } \Delta l & =2 \cdot \cot \theta \theta \\
& =55,3 \times 1,
\end{aligned} \\
& \left.\begin{array}{rl}
=\left(\frac{157 \times 435}{}\right. \\
0,4
\end{array} 0,83\right) \times 10^{-3} \quad \cong 5,3 \times 1,5 \\
& \simeq 141,7 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\frac{V_{R d, m i d}}{u}=\frac{V_{E d_{\text {max }}} \Rightarrow U=\frac{V_{R d_{\text {mid }}} \cdot v}{V}}{V_{E d, \text { max }}} & =\frac{141,7 \cdot 3,70}{412,4} \\
& \simeq 1,27 \mathrm{~m}
\end{aligned}
$$

- length of the area reinforced by stirrups with spacing sax:

$$
\begin{aligned}
w & =u+\Delta l \\
& =1,27+0,83=2,1 \mathrm{~m}
\end{aligned}
$$

Scole: 1/50

$$
\begin{aligned}
& w=2,1 \mathrm{~m} \\
& v-w=3,7-2,1
\end{aligned}
$$

 EXVIUGGRHMORUP DWHUD
7KHZD \triangle RXGAML QHGIMTK-RUMFDQILQHIEXYIP SLDFVFDO IRUKKHZRLWHVZKRSSHSDHTVKHTUHQRUFP HQWI

