
Masonry Structures 8th Seminar

Seminar task

Design of masonry storage house □ Structural analysis, drawings 3,5 LIFT 2nd floor ₩ basement SECTION 1-1 FILLING MASONRY t≤120 **MASONRY PILLARS**

8th homework

- Calculate the shear resistance at the section below the roof and at the bottom of the wall in the 1st floor
- Compare the effect of normal stress on the shear resistance of the load-bearing wall

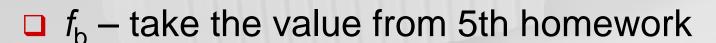
Shear strength of masonry

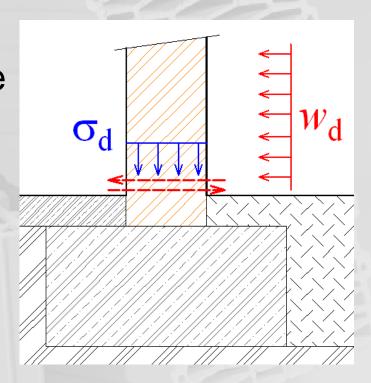
Design shear strength:

$$f_{\rm vd} = \frac{f_{\rm vk}}{\gamma_{\rm M}}$$

- \square $\gamma_M = 2.0$ (designed mortar)
- In case that the perpend joints are not filled with mortar, the characteristic shear strength is:

$$f_{vk} = \min \begin{cases} 0.5 f_{vko} + 0.4 \sigma_{d} \\ 0.045 f_{b} \end{cases}$$


Shear strength of masonry


 \Box f_{vko} – characteristic initial shear strength under zero compressive stress, see table

	$f_{ m vko}$ [MPa]			
Masonry units	General purpose mortar of the Strength Class given		Thin layer mortar (bed joint ≥ 0,5 mm and ≤ 3 mm)	Lightweight mortar
Clay	M10 - M20	0,30	0,30	0,15
	M2,5 - M9	0,20		
	M1 - M2	0,10		
Calcium silicate	M10 - M20	0,20		
	M2,5 - M9	0,15	0,40	0,15
	M1 - M2	0,10		
Aggregate concrete	M10 - M20	0,20		
Autoclaved Aerated Concrete	M2,5 - M9	0,15		
Manufactured stone and Dimensioned natural stone	M1 - M2	0,10	0,30	0,15

Shear strength of masonry

- □ σ_d design compressive stress perpendicular to the shear plane
- The effect of σ_d is favorable for the resistance of the structure => partial factors are:
 - \square $\gamma_F = 1,00$ for dead load
 - \square $\gamma_F = 0$ for live load

Shear resistance of the wall

■ Resistance per 1 meter of the wall (*t* is thickess of the wall):

$$V_{\rm Rd} = t \cdot f_{\rm vd} \, \, [{\rm kN/m}]$$

Compare the resistances of the two crosssections to understand the effect of normal stress!

Thank you for your attention

Any questions?