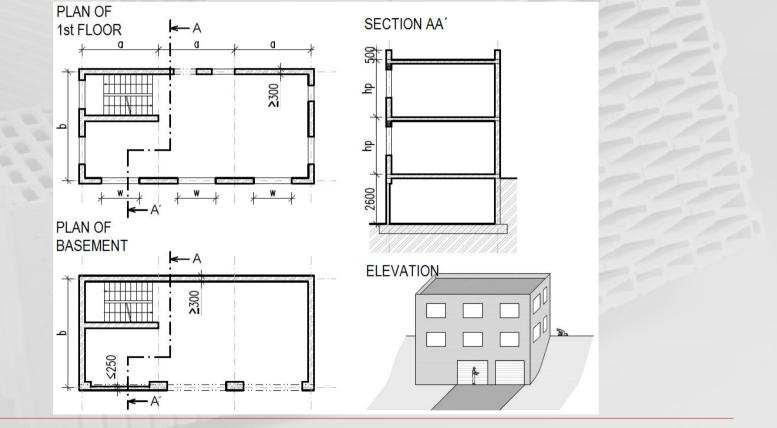


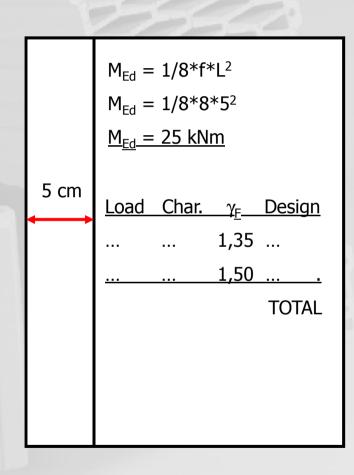
Concrete and Masonry Structures 2

Part M: Masonry



Introduction

- Petr Bílý <u>petr.bily@fsv.cvut.cz</u>
- people.fsv.cvut.cz/www/bilypet1/133CM02.htm
- Office no. B731
- Office hours: Tuesday 09:00
 - Friday 09:00


Seminar task

Design of masonry house in sloping terrain Structural analysis, drawings

Homework - page layout

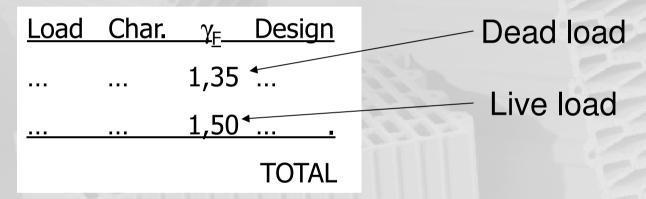
- A4 onesided, handwritten by pencil
- Each calculation:
 - General formula
 - Substitution of numbers
 - Result
- Loads in tables
- Quote units
- □ WELL-ARRANGED!!!

Advice for calculations

- Use N, mm and MPa units and you will not have any problems with the units anymore ③
- The only problem is with moments you get moments in Nmm. This unit is not used in practice => divide by 1,000,000 to get kNm

Before you begin...

- Visit teacher's website
- Read the task
- Find your individual parameters
- Get familiarized with masonry units used in our building


1st part: Design of slab

- Preliminary design of combined slab above 1st floor using tables
- Draw a detail of slab-wall joint

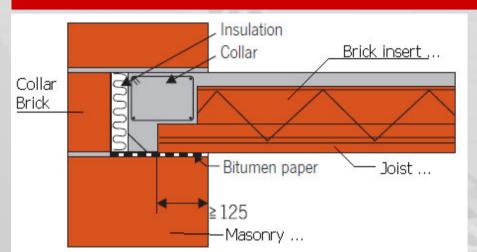
Preliminary design

Calculation of loadings – self-weight not included in this stage

Slab depth estimation

$$h \approx \left(\frac{1}{25} - \frac{1}{20}\right)L$$

Preliminary design


Design of the slabs using tables

- Length and spacing of girders
- Depth of the slab
- Type of brick inserts

Resistance of the slab for girders in spacing 500 mm

Length	Clear span	Reinfor cement	MIAKO 15/62,5 PTH MIAKO 19/62,5 PTH MIAKO 23/62,5 PTH											
of the girder			190		210 2		23	30 2		50	27	70	290	
[mm]	[mm]	Profile	q d	q _n	q d	q _n	q d	q _n	q _d	q _n	q d	q _n	q d	q _n
1 750	1 500	2ø8	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
2 000	1 750	2ø8	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
2 250	2 000	208	17.28	15.30	19.61	17.40	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00

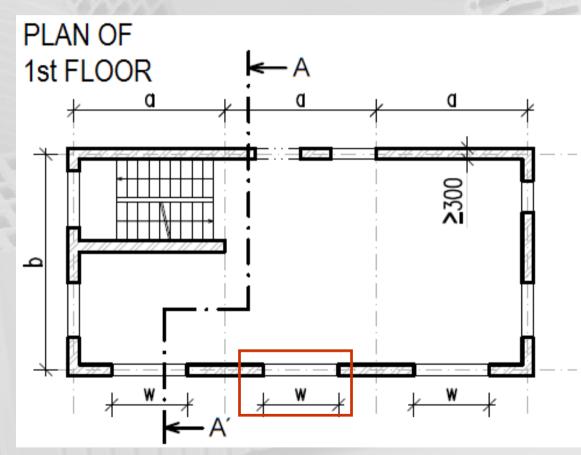
Slab-wall joint

+ Dimensions

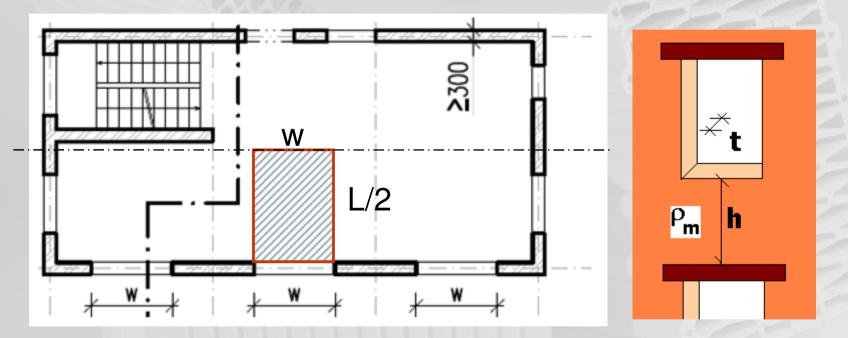
ļ

- + Annotate all the elements
- Do not use internal insulation
 - Collar min. 200 mm

2nd part: Design of lintels


Design of ceramic lintels using tables

Details of lintel-slab joint and window head

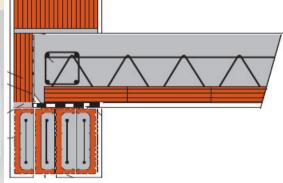

Design of ceramic lintels

Lintels above the widest window opening (*w*)

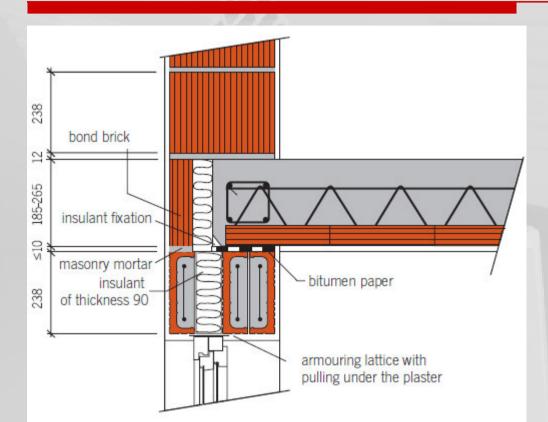
Design of ceramic lintels

Calculation of load

□ $f_{\text{lintel,d}} = f_{\text{slab,d}} L/2 + \rho_{m,d} t^* h [kN/m]$ □ $kN/m^3 = kg/m^3 / 100$ Including self-weight

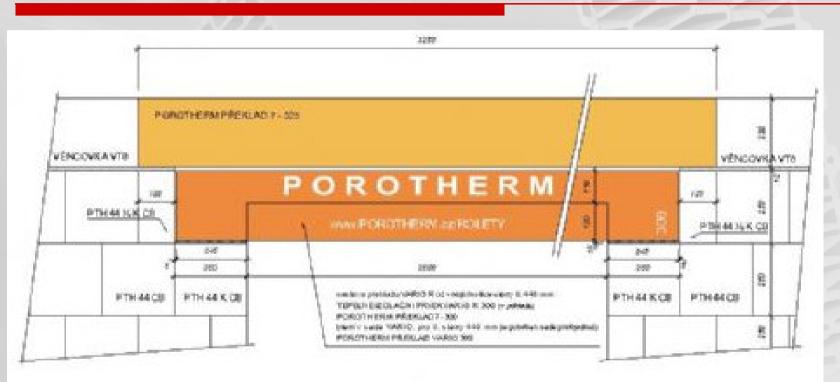

Design of ceramic lintels

Design of lintels using tables


- Type of lintel used
- Clear span and bedding length of lintel
- Number of lintels required

Load-	bearing	j capaci	Maximum design load [kN/m]					
Length mm	Bedding	Clear span mm	Qu	M u	1 lintel 9d ①	Load - c	combination	of lintels
1000	125	750	8,50	1,82	18,4	36,8	55,2	73,6
1250		1000	8,75	3,13	17,1	34,2	51,3	68,4
1500		1250	8,75	3,13	12,7	25,5	38,2	51,0
1750		1500	9,00	4,65	11,6	23,2		

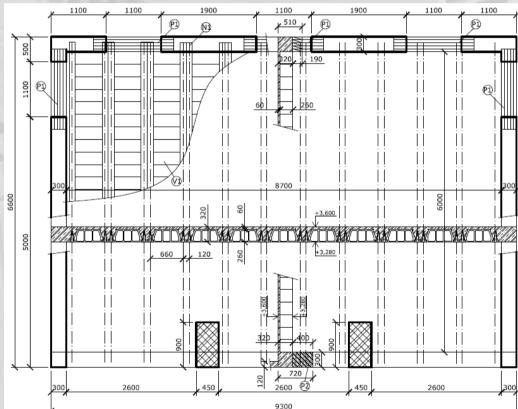
If collar brick is used, the lintel beneath it can not be considered to resist the loading!

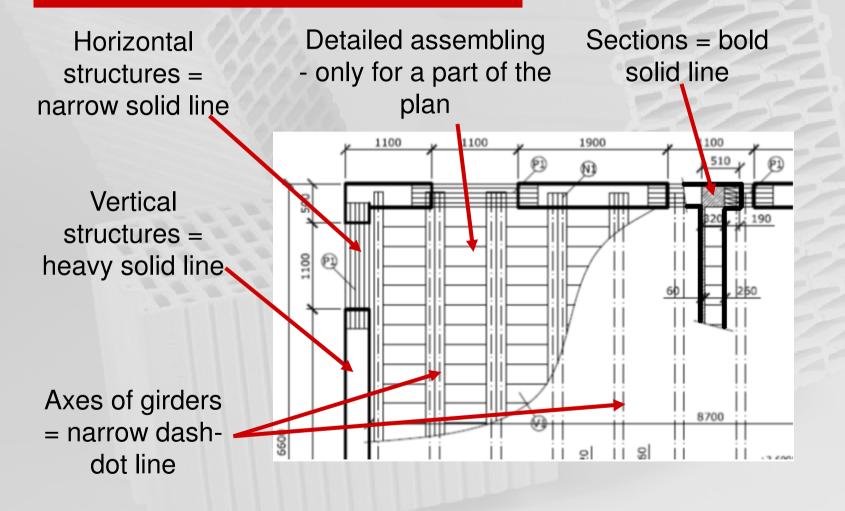


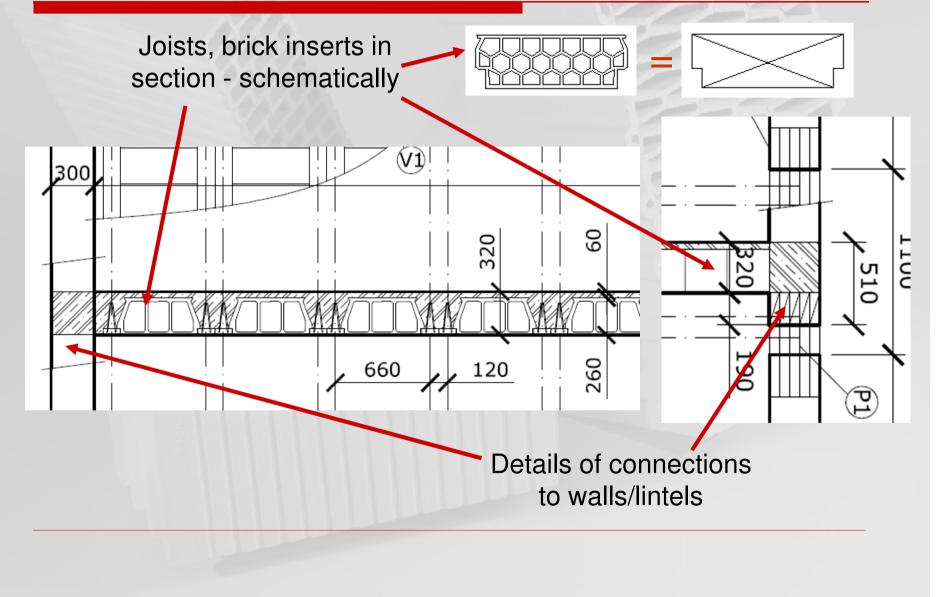
Detail of lintel-slab joint

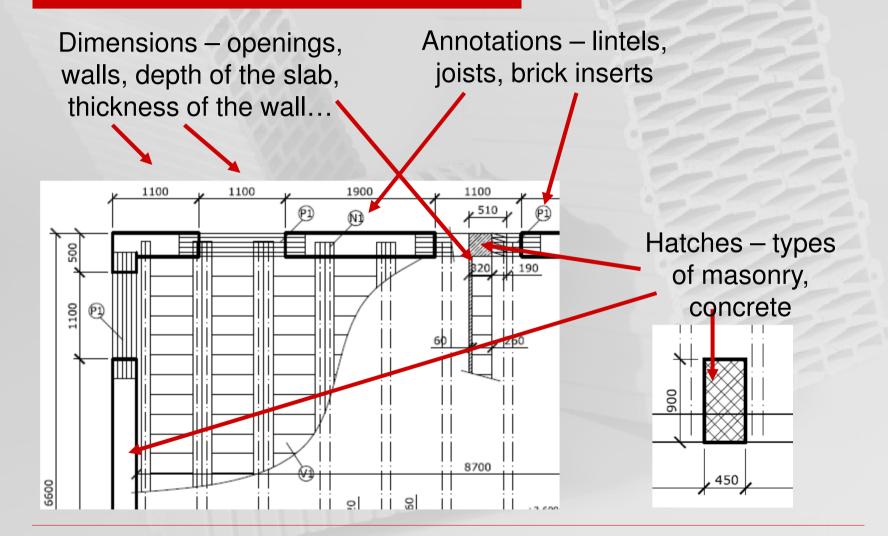
- + Dimensions
- + Annotate all the elements
- Do not use internal insulation
- ! Collar min. 200 mm

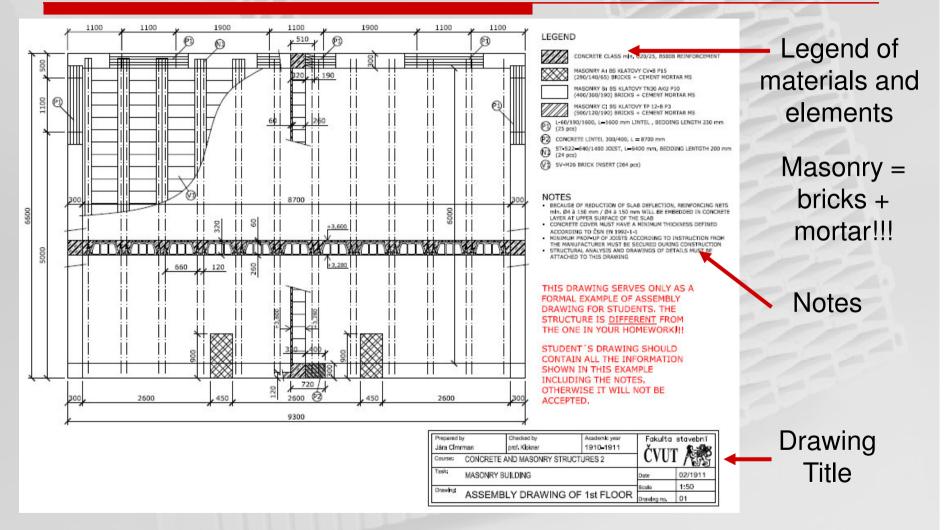
Detail of window head

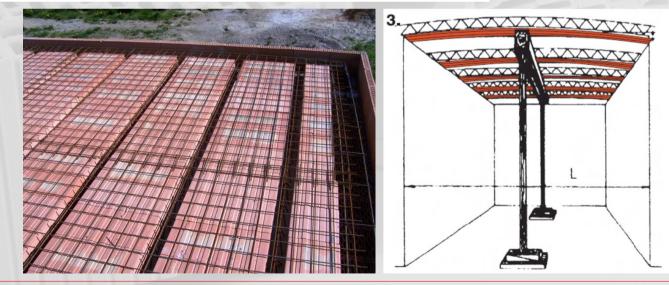



- + Dimensions
- + Annotate all the elements

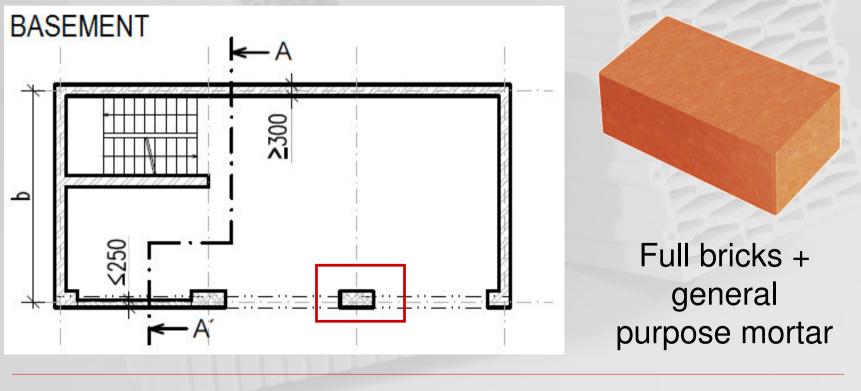

3rd part: Assembling drawing


- Use scale 1:50
- CAD system or handmade drawing your choice
- Leave free space for staircase (don't design the staircase)
- Adjust the dimensions of the structure in accordance with modular dimensions of masonry used


Plan of ceiling + vertical supports One section in each direction



The example drawing shows DIFFERENT structure – apply the rules to YOUR structure


NOTES

- BECAUSE OF REDUCTION OF SLAB DEFLECTION, REINFORCING NETS mln. Ø4 à 150 mm / Ø4 à 150 mm WILL BE EMBEDDED IN CONCRETE LAYER AT UPPER SURFACE OF THE SLAB
- CONCRETE COVER MUST HAVE A MINIMUM THICKNESS DEFINED ACCORDING TO ČSN EN 1992-1-1
- MINIMUM PROP-UP OF JOISTS ACCORDING TO INSTRUCTION FROM THE MANUFACTURER MUST BE SECURED DURING CONSTRUCTION
- STRUCTURAL ANALYSIS AND DRAWINGS OF DETAILS MUST BE ATTACHED TO THIS DRAWING

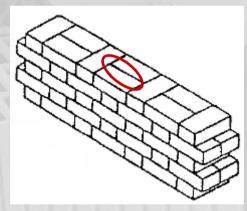
4th part: Design of pillar

Design dimensions and check load-bearing capacity of masonry pillar between garage doors in the basement

- f_u strength of the material, matches the strength label of the units: Pxy => f_u = xy MPa. Determined by laboratory tests.
- \Box $f_{\rm b}$ compressive strength of the units, $f_{\rm b} = \delta f_{\rm u}$
- □ f_m strength of the mortar. MCxy => xy MPa
- □ δ factor expressing the effect of dimensions of the brick, see table δ coefficient expressing effect of width and height of the brick

	h _p [mm]		b _p [mm]							
				50	100	150	200	250		
	50		0,85	0,75	070	0,70	0,65			
		65		0,95	0,85	0,75	0,70	0,65		
	188		1,15	1,00	8,98	0,80	0,75			
	150		1,30	1,20	1,10	1,00	0,95			
	200		1,45	1,35	1,25	1,15	1,10			
	250			1,55	1,45	1,35	1,25	1,15		

□ f_k – characteristic compressive strength of masonry


$$f_{\rm k} = K f_{\rm b}^{0.7} f_{\rm m}^{0.7}$$

□ K – coefficient, see table

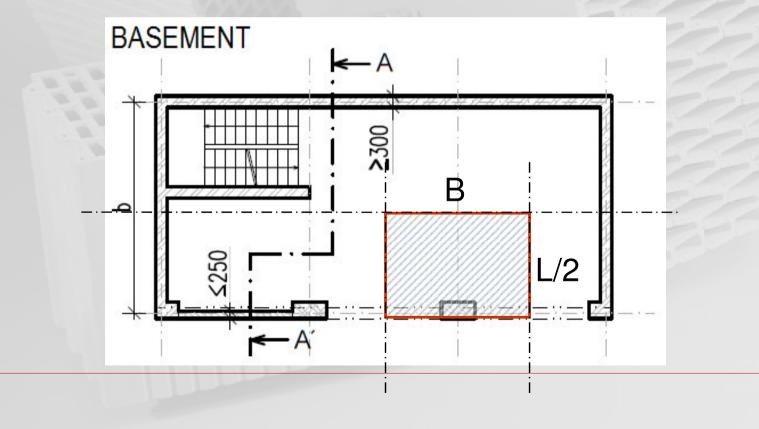
Groups of masonry units									
	Group								
Type of masonry units	1	2	3	4					
Type of masonity units		Volume of all holes (% of the gross volume)							
	-	V	'ertical holes	Horizontal holes					
concrete	≤25	25 - 60	60 - 70	25 - 70					
dimensioned natural	≤25	not used	not used	not used					
stone clay	≤ 25	25 - 55	55 - 70	25 - 70					
autoclaved aerated concrete	≤ 25	not used	not used	not used					
manufactured stone	≤ 25	not used	not used	not used					
calcium silicate	≤ 25	25 - 55	not used	not used					

K coefficient									
		Mortar							
Type of masonry units	Group	general purpose	thin layer (0,5-3 mm)	lightweight (600 - 800 kg.m³)	lightweight (800-1300 kg.m. ⁻⁹)				
	1	0,55	0,75	0,30	0,40				
clay	Ź	0,45	0,70	0,25	0,30				
ciay	3	0,35	0,50	0,20	0,25				
	4	0,35	0,35	0,20	0,25				
calcium silicate	1	0,55	0,80	X	Х				
calcium silicate	2	0,45	0,65	X	Х				
	1	0,55	0,80	0,45	0,45				
concrete	2	0,45	0,65	0,45	0,45				
concrete	3	0,40	0,50	Х	Х				
	4	0,35	Х	X	Х				
autoclaved aerated concrete	1	0,55	0,80	0,45	0,45				
manufactured stone	1	0,45	0,75	X	Х				
dimensioned natural stone	1	0,45	Х	х	Х				

K coefficient – the value from the table has to be multiplied by 0,8 if longitudinal perpend joint exists in the pillar/wall

Solid clay bricks => volume of pores = 0 %

 \Box f_{d} – design compressive strength of masonry

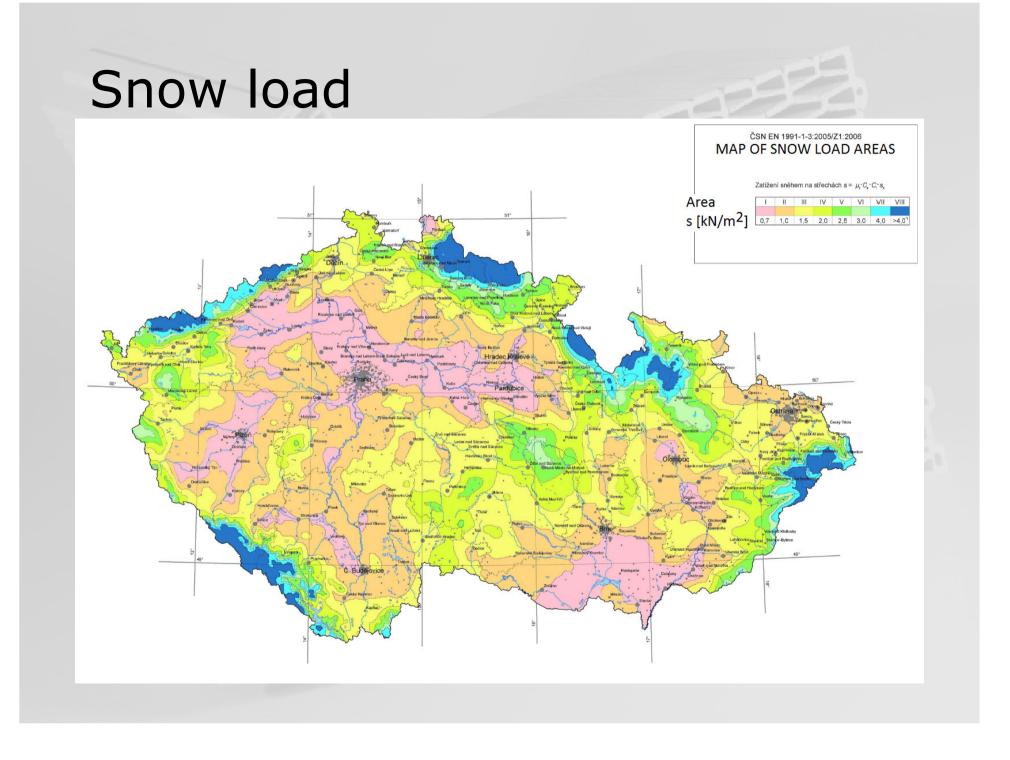

$$f_{\rm d} = \frac{f_{\rm k}}{\gamma_{\rm M}}$$

\Box γ_{M} – partial factor for material, use 2,2

Partial factor for material γ_{M} (according to czech national annex NA.2.1)									
	Material of units								
Masonry made with	Autoclaved aerated		Other						
	concrete	Ottier							
units of category I, designed mortar	2,5 2		20						
units of category I, prescribed mortar	2,7	2,2							
units of category li	3,0		2,5						

Load

Load from slabs, self-weight of the walls, parapet on the roof from tributary area from all floors

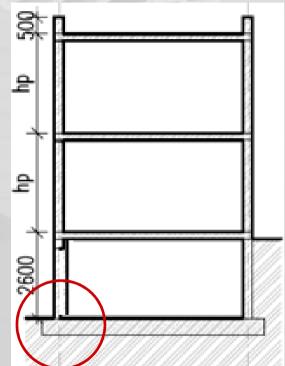

Snow load

Characteristic snow load:

$$s_k = \mu_i C_e C_t s$$

 \square μ_i – snow load shape coefficient, for flat roof 0,8

- C_e exposure coefficient, for normal topography 1,0
- □ C_t thermal coefficient, for normal conditions 1,0
- s basic snow load according to snow map


Design of dimensions

- Maximum normal force in the bottom of the pillar in basement (without self-weight of the pillar) => N_{max}
- **Estimation**:

$$A_{\rm req} = \frac{N_{\rm max}}{0,7f_{\rm d}}$$

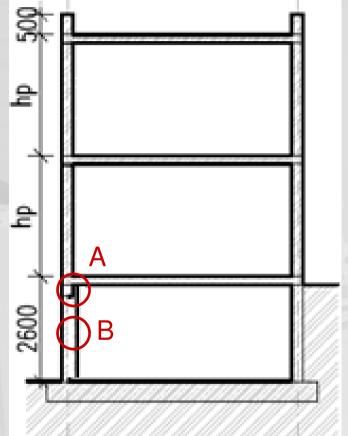
Design (with respect to the dimensions of masonry units):

$$A \ge A_{\rm req} \to b \times t$$

Slenderness ratio

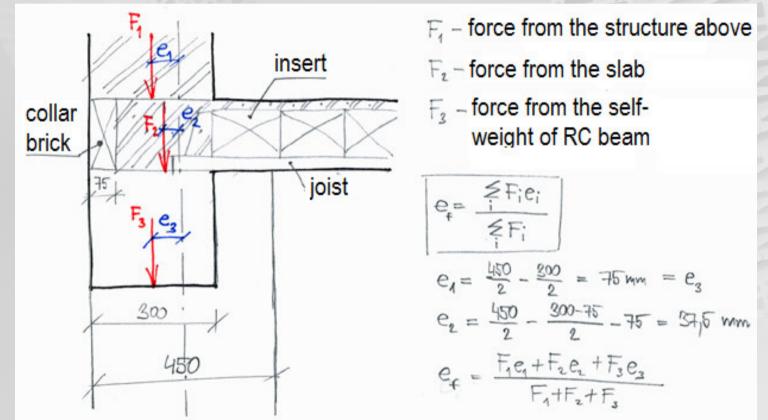
Criterion:

$$\frac{h_{\rm ef}}{t_{\rm ef}} \le 27$$


- □ $h_{ef} = \rho_n h_p$, $h_p = clear$ height of the pillar
- □ For walls restrained at the top and bottom by solid slabs, take $\rho_n = 0.75$

$$\Box t_{ef} = \min(b, t)$$

Cross-sections to be checked


- A. Top of the pillar eccentric load, high vertical load
- B. Effect of slenderness (possibility of buckling)

$$N_{Ed,A} = N_{max}$$

 $N_{Ed,B} = N_{max} + \frac{1}{2}$ self-weight
of the pillar

Eccentricity due to loads

A. Draw detail and calculate eccentricity. Example:

B. One half of eccentricity in A

Vertical resistance – A

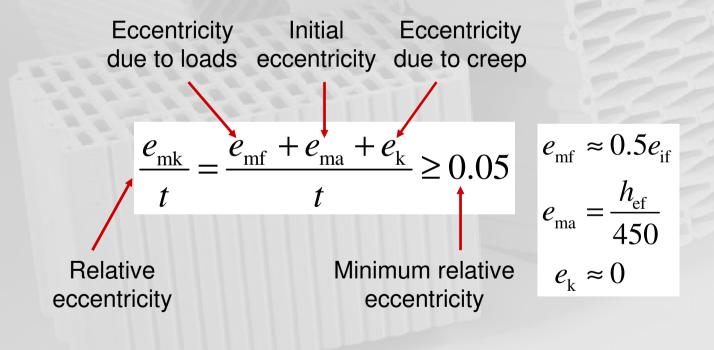
$$N_{\rm Rd,i} = \Phi_{\rm i} A f_{\rm d}$$

A – cross-sectional area of the wall

 $\Box \Phi_i$ – capacity reduction factor

Minimum eccentricity

$$\Phi_{i} = 1 - \frac{2e_{i}}{t}$$

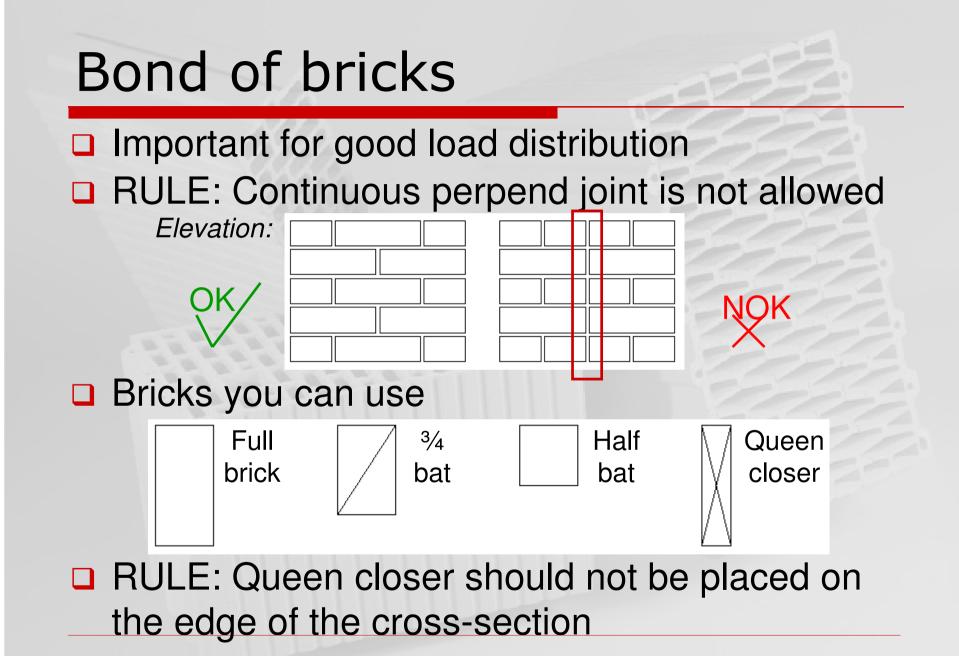

$$e_{i} = e_{if} + e_{ia} \ge 0.05t$$

$$e_{ia} = \frac{h_{ef}}{450}$$
Thickness of the pillar Total eccentricity due to loads eccentricity

Vertical resistance – B

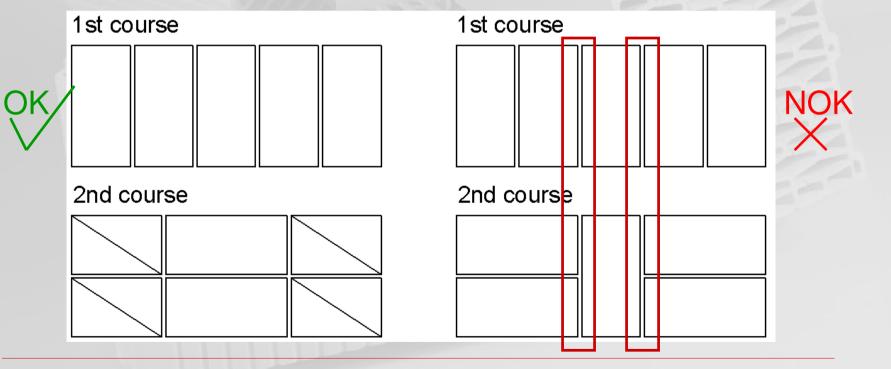
$$N_{\rm Rd,m} = \Phi_{\rm m} A f_{\rm d}$$

 $\Box \Phi_m$ – capacity reduction factor, see table


Vertical resistance – B

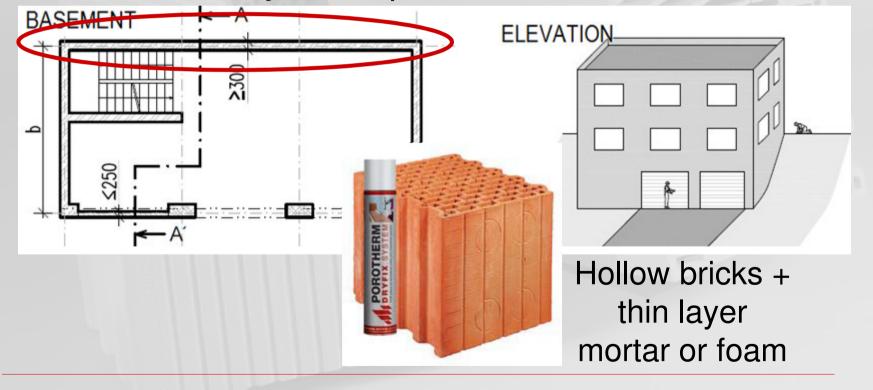
Slenderness ratio		San istu		Eccentrici	ity e mk/t	1 that are	
h ef/t ef	0,05	0,10	0,15	0,20	0,25	0,30	0,33
0	0,90	0,80	0 70	0,60	0,50	0,40	0,34
1	0,90	0,80	0 70	0,60	0,50	0,40	0,34
2	0,90	0,80	0 70	0,60	0,50	0,40	0,34
3	0,90	0,80	0 70	0,60	0,50	0,40	0,34
4	0,90	0,80	0.70	0,60	0,49	0,39	0,33
5	0,89	0,79	0.69	0,59	0,49	0,39	0,33
6	0,88	0,78	0.68	0,58	0,48	0,38	0,32
7	0,88	0,77	0.67	0,57	0,47	0,37	0,31
8	0,86	0,76	0,66	0,56	0,46	0,35	0,29
9	0,85	0,75	0,65	0,54	0,44	0,34	0,28
10	0,84	0,73	0,63	0,53	0,42	0,32	0,26
11	0,82	0,72	0,61	0,51	0,40	0,30	0,24
12	0,81	0,70	0,59	0,49	0,38	0,28	0,22
13	0,79	0,68	0,57	0,47	0,36	0,26	0,20
14	0,77	0,66	0,55	0,45	0,34	0,24	0,18
15	0,75	0,64	0,53	0,43	0,32	0,22	0,17
16	0,72	0,62	0,51	0,40	0,30	0,20	.0,15
17	0,70	0,59	0,49	0,38	0,28	0,18	0,13
18	0,68	0,57	0,46	0,36	0,26	0,16	0,12
19	0,65	0,54	0,44	0,33	0,23	0,15	0,10
20	0,63	0,52	0,41	0,31	0,21	0,13	0,09

Resistance check

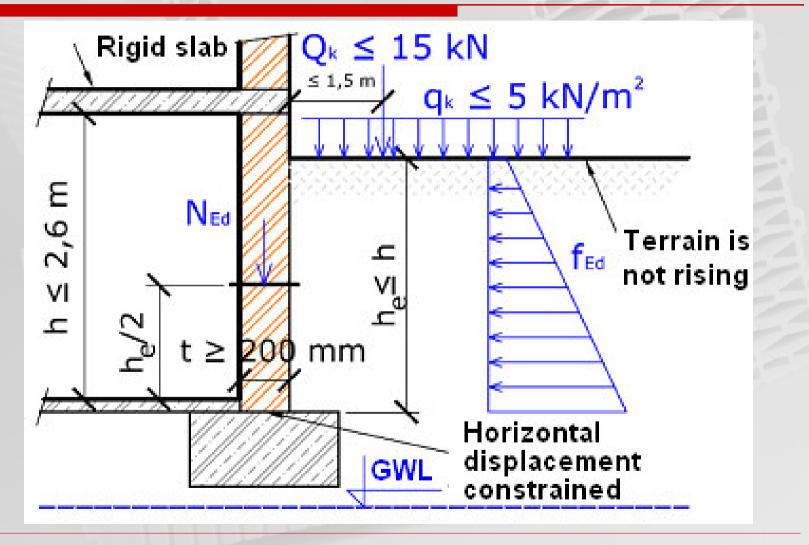

$$N_{\mathrm{Rd,i}} \ge N_{\mathrm{Ed,A}}$$

 $N_{\mathrm{Rd,m}} \ge N_{\mathrm{Ed,B}}$

- In practice: If any of the criteria is not met, the pillar should be redesigned!!!
- In the homework: If any of the criteria is not met, propose a change to improve loadbearing capacity of the pillar


Bond of bricks

- Example: Pillar 300 x 750 mm made from classic full bricks (290/140/65 mm)
- Description Plan:



5th part: Basement wall

Using simplified method according to Eurocode 6, check the load-bearing capacity of basement wall loaded by earth pressure at rest

Simplified Method: Rules

Simplified Method: Conditions

□ Lateral: $N_{\rm Ed,min} \ge F_{\rm Ed} = \frac{\gamma b h h_{\rm e}^2}{\beta_{\rm e} t}$

□ Vertical:

$$N_{\rm Ed,max} \le N_{\rm Rd} = \frac{btf_{\rm d}}{3}$$

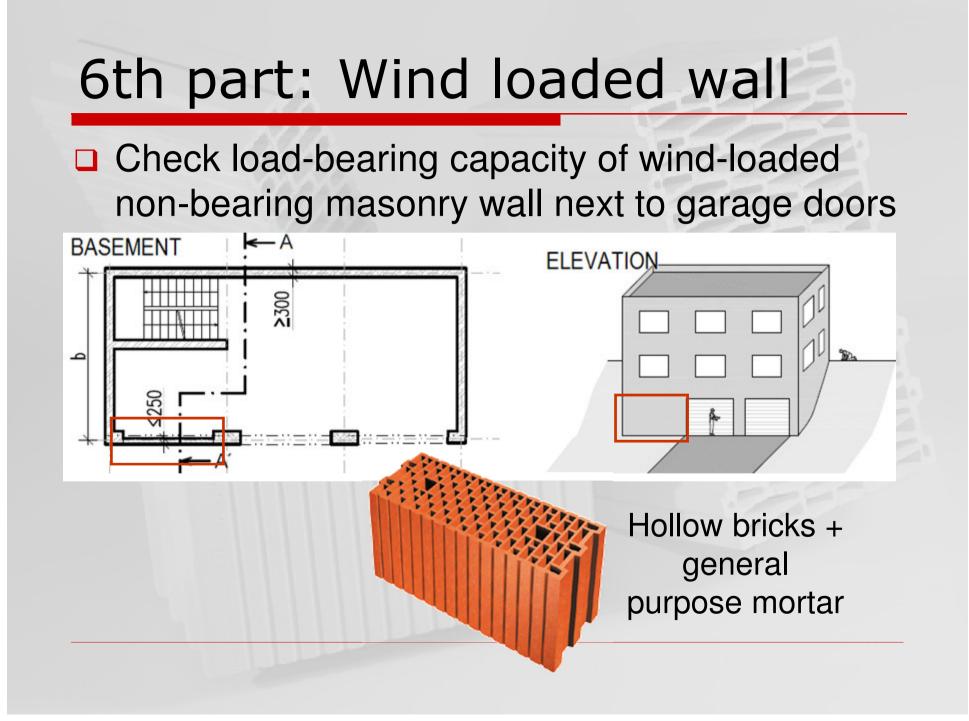
- N_{Ed,min} = characteristic value of vertical dead loads in the section of the wall in the middle of backfill height
- N_{Ed,max} = design value of vertical dead+live loads in the section of the wall in the middle of backfill height
- F_{Ed} = lateral force effect of the backfill
- N_{Rd} = vertical load-bearing capacity of the wall

Simplified Method: Conditions

- $\square \gamma$ density of soil (backfill), see assignment
- b width of the wall, take b = 1 m and calculate the forces per 1 m
- □ h clear height of the wall
- \square h_e height of the backfill, h_e = h
- t thickness of basement wall, 300 mm for POROTHERM 30
- □ f_d design strength of masonry

Simplified Method: Equations

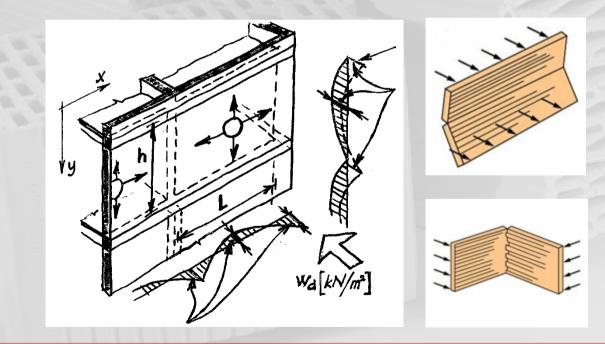
β_e – coefficient to involve horizontal spanning (L) of the wall


$$\begin{split} L &\geq 2h \rightarrow \beta_e = 20 \\ L &\leq h \rightarrow \beta_e = 40 \\ h &< L &< 2h \rightarrow \beta_e = 60 - 20 \frac{L}{h} \end{split}$$

Strength of masonry

- Use the same approach as for pillar with following changes:
 - Blocks connected by thin layer mortar or foam => no effect of mortar, characteristic strength is: $f_k = K f_b^{0.7}$
 - Volume of pores (holes) = 52 %
 - No longitudinal perpend joint => don't multiply K by 0,8
 - □ Use γ_M = 2,0 (designed, not prescribed mortar)

If the capacity is not enough:

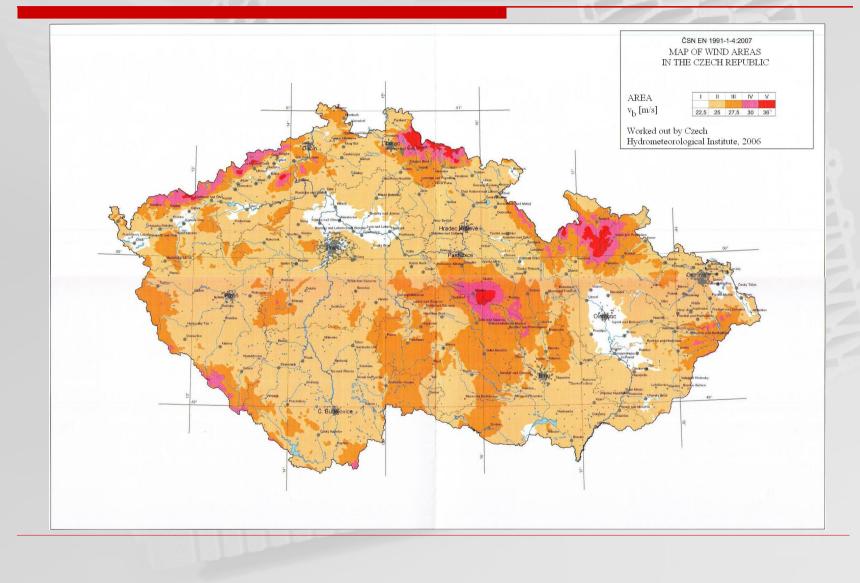

- Increase thickness of the wall
- Use masonry of higher strength (applicable only if vertical condition is not met)
- Use reinforced masonry (ditto)
- Design strengthening pillars
- Design reinforced concrete basement
- => Choose one of the measures if your wall doesn't meet the criteria!

Wind loaded masonry

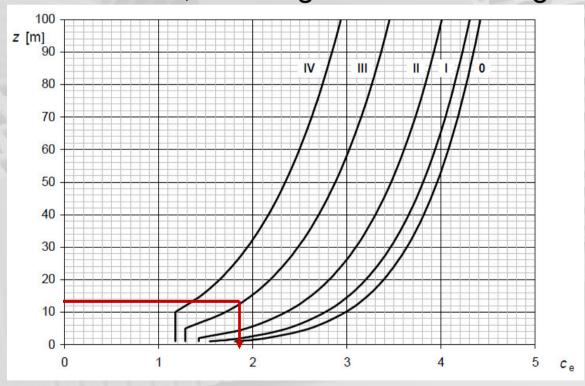
Non-bearing masonry is laterally loaded, vertical load is very small => possibility of flexural failure

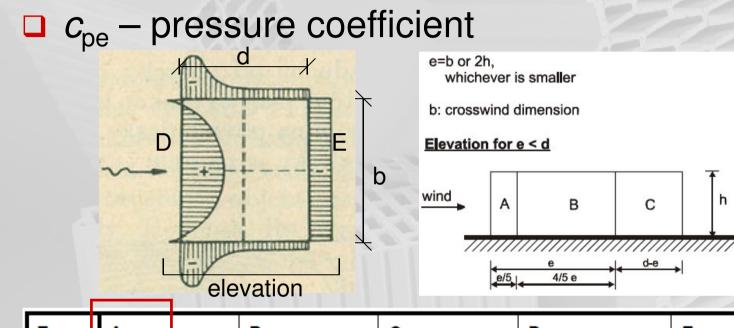
Wall = "two-way slab"

- **Design wind load:** $w_d = w_k^* 1,5$ (partial factor)
- □ Characteristic wind load *w*_k [kN/m²]


$$w_{\rm k} = q_{\rm b} c_{\rm e} c_{\rm pe}$$

 \Box $q_{\rm b}$ – reference mean velocity pressure [kN/m²]

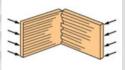

$$q_{\rm b} = \frac{1}{2}\rho v_{\rm b}^2$$


You will recieve the value in $[Pa] = [N/m^2] =>$ divide by 1000 to recieve kN/m²

- \Box ρ air density, 1,25 kg.m⁻³
- V_b basic wind velocity (defined from a map in EC 1991-1-4), see assignment

*C*_e – exposure factor, see graph below
 Terrain category – III (suburb) or IV (dowtown)
 z – in our case, the height of the building

Zone	Α		В		с		D		E	
h/d	C pe,10	C _{pe,1}	C _{pe,10}	C _{pe,1}	C pe,10	C _{pe,1}	C pe,10	C _{pe,1}	C _{pe,10}	C _{pe,1}
5	-1,2	-1,4	-0,8	-1,1	-0,5		+0,8	+1,0	-0,7	
1	-1,2	-1,4	-0,8	-1,1	-0,5		+0,8	+1,0	-0,5	
≤ 0,25	-1,2	-1,4	-0,8	-1,1	-0,5		+0,7	+1,0	-0,3	


h

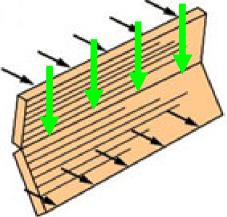
f_{xk1} – characteristic flexural strength in the plane of failure parallel to the bed joints

	f _{xk1} [MPa]							
Masonry Unit	General purp	ose mortar	Thin layer mortar	Lightweight mortar				
,	∫m≤ 5 MPa	<i>f</i> _m ≥ 5 MPa						
Clay	0,10	0,10	0,15	0,10				
Calcium silicate	0,05	0,10	0,20	not used				
Aggregate concrete	0,05	0,10	0,20	not used				
Autoclaved aerated concrete	0,05	0,10	0,15	0,10				
Manufactured stone	0,05	0,10	not used	not used				
Dimensioned natural stone	0,05	0,10	0,15	not used				

f_{xk2} – char. flex. strength in the plane of failure perpendicular to the bed joints

Masonry Unit		f _{xk2} [MPa]						
		General pur	pose mortar	Thin layer mortar	Lightweight mortar			
		<i>f</i> _m < 5 MPa	f _m ≥ 5MPa					
Clay		0,20	0,40	0,15	0,10			
Calcium silicate		0,20	0,40	0,30	not used			
Aggregate concrete		0,20	0,40	0,30	not used			
Autoclaved aerated concrete	ho < 400 kg/m ³	0,20	0,20	0,20	0,15			
	$ ho \ge 400 \ kg/m^3$	0,20	0,40	0,30	0,15			
Manufactured stone		0,20	0,40	not used	not used			
Dimensioned natural stone		0,20	0,40	0,15	not used			

Design values of flexural strength:


$$f_{xd1} = \frac{f_{xk1}}{\gamma_{M}} + \sigma_{d}$$

$$f_{xd2} = \frac{f_{xk2}}{\gamma_{M}}$$

 \Box γ_{M} = 2,2 (prescribed mortar)

σ_d – stress from the vertical loading in the critical cross-section, i.e. the stress from the self-weight of upper half of the wall

$$\sigma_{\rm d} = \frac{\rho_{\rm m}}{1000t} \cdot \frac{h}{2} \quad [\text{MPa}]$$

 \square ρ_m – density of filling masonry (14 kN.m⁻³)

Design bending moment

Formulae [kNm/m]:

$$M_{\rm Ed,y} = \mu \alpha w_{\rm d} L^2$$

$$M_{\rm Ed,x} = \alpha w_{\rm d} L^2$$

 \square μ – orthogonal ratio of flexural strengths

$$\mu = \frac{f_{\rm xd1}}{f_{\rm xd2}}$$

Design bending moment

$\square \alpha$ – bending moment coefficient, see table

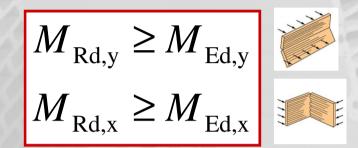
Wall support condition E = wall is simply supported on all four edges

П	E		h/L								
	μ	0,30	0,50	0,75	1,00	1,25	1,50	1,75	2,00		
	0,05	0,054	0,076	0,090	0,098	0,103	0,107	0,109	0,110		
	0,10	0,039	0,062	0,078	0,088	0,095	0,100	0,103	0,106		
-	0,15	0,032	0,053	0,070	0,081	0,089	0,094	0,098	0,103		
-	0,20	0,026	0,046	0,064	0,076	0,084	0,090	0,095	0,099		
	0,25	0,023	0,042	0,059	0,07	0,080	D,087	0,091	0,096		
	0,30	0,020	0,038	0,055	0,068	0,077	0,083	0,089	0,093		
	0,35	0,018	0,035	0,052	0,064	0,074	0,081	0,086	0,090		
	0,40	0,017	0,032	0,049	0,062	0,071	0,078	0,084	0,088		
	0,50	0,014	0,028	0,044	0,057	0,066	0,074	0,080	0,085		
	0,60	0,012	0,025	0,040	0,053	0,062	0,070	0,076	0,081		
	0,70	0,011	0,023	0,037	0,049	0,059	0,067	0,073	0,078		
	0,80	0,010	0,021	0,035	0,046	0,056	0,064	0,071	0,076		
	0,90	0,009	0,019	0,032	0,044	0,054	0,062	0,068	0,074		
	1,00	0,008	0,018	0,030	0,042	0,051	0,059	0,066	0,072		

Moment of resistance

Formulae [kNm/m]:

$$M_{\rm Rd,y} = f_{\rm xd1}Z$$


$$M_{\rm Rd,x} = f_{\rm xd2}Z$$

Z – elastic section modulus per 1 meter of the wall [m³/m]:

$$Z = \frac{t^2}{6}$$

t – thickness of the wall, t = 175 mm (thickness "without plaster")

Resistance check

- In practice: If any of the criteria is not met, the wall should be redesigned!!!
- In the homework: If any of the criteria is not met, propose a change to improve loadbearing capacity of the wall (reinforced masonry, higher thickness...)

Thank you for your attention