CM01 – Concrete and Masonry Structures 1 HW12 – Pad footing Author: Jakub Holan Last update: 05.12.2023 10:28 ### Task 6 #### Task 6 – Staircase In Task 6, pad (isolated) footing will be designed for a bottom middle column of the structure from Task 1. Design a footing for the inner column of the frame from Task 1. Use the resistance of the soil $R_d = 400 \text{ kPa}$. #### Please work out: - 1. **Plain concrete footing.** Sketch of the footing shape. - 2. **Reinforced concrete footing**. Drawing of the shape of the footing and layout of reinforcement including list of reinforcement. #### Task 6 – Assignment goals #### Our goal will be to: - 1) Design and assess a footing made of: - a) plain concrete, - b) reinforced concrete. - 2) Draw a sketch of: - a) shape the plain concrete footing, - b) reinforcement of the reinforced concrete footing. ### Th1) Stresses in footings #### Stresses in footings Unlike in most other concrete structures, the compressive stresses in the footing are not important. The **tensile stress** in the footing **are important**! - → In <u>PC</u> footings, the <u>tensile strength of the concrete</u> is important. - → In RC footings, it is necessary to design tensile reinforcement. Additionally, the <u>compressive resistance of the soil</u> under the footing must be assessed. #### Stresses in footings Unlike in most other concrete structures, the compressive stresses in the footing are not important. The **tensile stress** in the \rightarrow In <u>PC</u> footings, the <u>ter</u> → In <u>RC</u> footings, it is ne Additionally, the compassessed. ## Stresses in footings The footing is loaded by **normal force** as well as **bending moment** and **shear force** (see Task 1), which can also be expressed as a **normal force with eccentricity** The eccentricity can be calculated as $$e= rac{M}{N}$$, #### where: M consists of a bending moment from the upper structure and bending moment induced by the shear force the upper structure, N consists of normal force from the upper structure and self-weight of the footing. Normal force and bending moment from the upper structure acting at the base of the column. Normal force and bending moment from the upper structure acting on the soil. The shear force acting at the base of the column. The shear force induces a bending moment at the soil level: $M = H_{Ed}h$ Overall bending moment at the soil level is a sum of: - bending moment from the upper structure - bending moment from the shear force. Overall normal force at the soil level is the sum of: - normal force from the upper structure - self-weight of the footing. The total eccentricity of the normal force is determined by the the overall moment and overall normal force. #### Eccentricity of the normal force The total eccentricity of the normal force is determined by the overall moment and overall normal force: $$e = \frac{M_{Ed} + H_{Ed}h}{N_{Ed} + G_{0,d}}$$ $$G_{0,d} = b^{2}h \cdot 25 \cdot 1.35$$ #### Remember! The eccentricity depends on the height of the footing. Therefore, if the height changes during the design process, the eccentricity will change also! ## Th3) Effective loading area #### Effective loading area If the **normal force were applied in the column axis** (e = 0), the load area of the footing would correspond to the **floor area of the footing** $$A_{eff} = A_c = b^2.$$ #### Effective loading area However, in reality, the normal force does not act in the column axis but acts at a certain eccentricity. #### Effective loading area Therefore, only a certain part of the soil is loaded by the footing, and this part is known as the **effective loading area of the footing**, and this area depends on the eccentricity of the normal force. #### Effective loading area The effective loading area can be calculated using the equation $$\mathbf{A_{eff}} = 2(b/2 - e) \cdot b = (\mathbf{b} - \mathbf{2e}) \cdot \mathbf{b}$$ #### Remember! The effective loading area depends on the eccentricity, which depends on the height of the footing. Therefore, if the height changes during the design process, the effective loading area will change also! ## Task steps #### Task steps The task will consist of the following steps: The width of the footing will be the same for PC and RC footing! - design of floor dimensions (width of the footing), - 2) design and assessment of plain concrete (PC) footing - 3) design and assessment of reinforced concrete (RC) footing - 4) drawing of **sketches**. ## 1) Design of footing width For simplicity, we will design a **square foot** with a width of b. When designing the footing width, we use the condition that the stress in the soil must be smaller than the soil resistance $$\frac{N_{Ed} + G_{0,d}}{A_{eff}} \le R_d.$$ $$\sigma \le R_d$$ From the condition $$\sigma = \frac{N_{Ed} + G_{0,d}}{A_{eff}} \le R_d$$ we obtain an equation for the calculation of the required effective load area $$A_{eff,req} = \frac{N_{Ed} + G_{0,d}}{R_d}$$ where N_{Ed} is the normal force from the upper structure (see Task 1), $G_{0,d}$ is the self-weight of the footing (we do not know the exact value right now, so we will estimate it as $0.1N_{Ed}$), R_d is the soil resistance (assigned as 400 kPa). We know that the effective area is always smaller the plan area. Therefore, when designing the footing width, we want the **floor** area to be "slightly larger"* than the required effective area $$b^2 \geq 1.25 \cdot A_{eff,req}$$ $$A_{floor} \geq 1.25 \cdot A_{eff,req}$$ ^{*} We will estimate that the floor plan needs to be approximately 25% larger. This is only an "experience estimate", which is not supported by any calculations. Therefore, we must verify the design width later! From the condition $$b^2 \ge 1.25 \cdot A_{eff,reg}$$ we obtain an equation for the calculation of the footing width $$b \geq \sqrt{1.25 \cdot A_{eff,req}}$$ The width of the footing must be a multiple of 50 mm! After we design the footing width, we must verify that the stress in the soil is smaller than the soil resistance: $$\sigma = \frac{N_{Ed} + G_{0_d}}{A_{eff}} \le R_d.$$ However, in order to determine the stress, we must first determine - the **height** of the foot, - the self-weight of the foot, - effective loading area. When verifying the design, we estimate the height of the footing by assuming that the load-bearing angle should be at least 60°*, $$h \ge a \tan \alpha = \frac{b - b_s}{2} \tan 60^\circ$$. The height of the footing must be a multiple of 50 mm! After we estimate the height of the footing, we can calculate the self-weight of the footing as $$G_{0.d} = 1.35 \cdot 25 \cdot b^2 h$$ where b is the footing width and h the footing height. Using the height and the self-weight of the footing, we can calculate the **eccentricity** of the normal force $$e = \frac{M_{Ed} + H_{Ed}h}{N_{Ed} + G_{0,d}}.$$ And using the eccentricity, we can calculate the effective loading area of the footing $$A_{eff} = b(b - 2e).$$ Finally, we can assess the **condition for the stress in the soil**: $$\sigma = \frac{N_{Ed} + G_{0_d}}{A_{eff}} \le R_d.$$ If this condition is not satisfied, the footing width is too small and must be increased. If this condition is satisfied by a large margin, the footing width is too big and should be decreased. If you change the width (increased or decreased), the verification* must be done again! ## Design of footing width – summary $$A_{eff,req} = \frac{N_{Ed} + 0.1N_{Ed}}{R_d}$$ $$b \ge \sqrt{1.25 \cdot A_{eff,req}}$$ $$b = \dots mm$$ $$h \ge \frac{b - b_s}{2} \operatorname{tg} 60^{\circ}$$ $$h = \dots mm$$ $$G_{0,d} = 1.35 \cdot 25 \cdot b^2 h$$ $$e = \frac{M_{Ed} + H_{Ed}h}{N_{Ed} + G_{0,d}}$$ $$A_{eff} = b(b - 2e)$$ $$\sigma = \frac{N_{Ed} + G_{0_d}}{A_{eff}} \le R_d$$ If the condition is not satisfied, we change the width and repeat the verification. ## 2) Design of plain concrete footing #### Plain concrete footing The <u>width</u> of the foot is already determined from the previous calculation and is <u>not</u> changed in any way. The **height** of the footing will be designed more accurately. #### We will assess: - tensile stresses in concrete - compressive stresses in soil. #### Plain concrete footing For the calculations, the footing is modelled as a **cantilever** loaded from the load from soil - i.e. the **stress in the soil** induced by the normal force. We design the height from the condition the that the most extreme tension in concrete must not exceed tensile strength of concrete Thus, we will use the value calculated during the verification of the footing width. We design the height from the condition the that the most extreme tension in Tabulka 3.1 – Pevnostní a deformační charakteristiky betonu concre Analytické vztahy/ Pevnostní třídy betonu Det! vysvětlivky ickem 12 16 20 25 30 35 40 45 50 55 60 70 80 90 uti konzoly (MPa) $f_{\rm ck,cube}$ 15 20 30 37 45 50 55 60 67 75 85 95 105 (MPa) f_{cm} $f_{cm} = f_{ck} + 8$ 20 33 24 28 38 43 48 53 58 63 68 88 98 78 (MPa) (MPa) $f_{\text{ctm}} = 0.30 \times f_{\text{ck}}^{(2/3)} \le C50/60$ $f_{\rm ctm}$ 1,6 1.9 2,2 2.6 2,9 3,2 3.5 4,2 3,8 4,1 4,4 4,6 4,8 5 (MPa) $f_{\text{ctm}} = 2.12 \cdot \ln(1 + (f_{\text{cm}}/10)) > C50/60$ $f_d = b\sigma_d$ $f_{\rm ctk, 0.05}$ $f_{\text{ctk.0.05}} = 0.7 \times f_{\text{ctm}}$ 1,1 1,3 1,5 1,8 2 2,2 2,5 2,7 2,9 3.1 3,2 3.5 3 3,4 (MPa) 5% kvantil $f_{ctk:0.95} = 1.3 \times f_{ctm}$ $f_{ctk,0.95}$ 2,5 2,9 3,3 3,8 4.2 5,3 5,5 4,6 4.9 5,7 6,3 6,6 6 (MPa) 95% kvantil $E_{\rm cm} = 22(f_{\rm cm}/10)^{0.3}$ E_{cm} during the verification of the footing width. 35 36 37 38 39 41 42 (f_{cm} v MPa) 34 27 (GPa) 29 30 31 33 We design the height from the condition the that the most extreme tension in concrete must not exceed tensile strength of concrete $$\sigma_{ct} = \frac{m_c}{W} = \frac{\frac{1}{2}f_d a^2}{\frac{1}{6}bh^2} \le f_{ctd} = \frac{\alpha_{ct}f_{ctk,0.05}}{\gamma_c}$$ By modifying the condition above, we obtain the **equation for the design of the footing height** $$h \geq a \sqrt{\frac{3f_d}{bf_{ctd}}}$$ The height of the footing must be a multiple of 50 mm! ### Design – Effective loading area After we design the footing height, we can calculate the real effective loading area $$A_{eff} = b(b - 2e)$$ $$e = \frac{M_{Ed} + H_{Ed}h}{N_{Ed} + G_{0,d}}$$ $$G_{0,d} = b^{2}h \cdot 25 \cdot 1.35$$ Use the height designed for the PC footing (see previous slide) and NOT the estimation of height used in the design of width $(a \cdot tg 60^{\circ})!$ #### Assessment The designed footing must be assessed using two conditions. - the most extreme **tensile stress must be smaller than the tensile strength** of the concrete. - the stress in the soil must be smaller than the soil resistance. #### Assessment – concrete stress The most extreme tensile stress in concrete must be smaller than the tensile strength of the concrete Use the height designed for the PC footing. Do NOT use the estimation of height used in the design of the width $(a \cdot tg 60^\circ)!$ We must use the real effective loading area calculated for the PC footing. Do NOT use the value calculated during the design of the footing width! #### Assessment – soil stress The compressive stress in the soil must be smaller than the soil resistance $$\sigma = \frac{N_{Ed} + G_{0,d}}{A_{eff}} \le R_d.$$ We must use the real self-weight and real effective loading area of the PC footing. Do NOT use the values calculated during the design of the footing width! #### Assessment If any of the conditions are not satisfied, the footing should be redesigned. In the homework, only propose how you would change the design. Do not recalculate the HW. 3) Design of reinforced concrete footing ### Reinforced concrete footing The <u>width</u> of the foot is already determined from the previous calculation and is <u>not</u> <u>changed</u> in any way. The **height** of the footing will be designed more accurately. #### We will design/assess: - tensile reinforcement, - compressive stresses in soil. ## Reinforced concrete footing The reinforced footing is again modelled as a cantilever, but now with an effective length $$l_k = a + 0.15b_s$$ We can **choose the height** anywhere from 200 mm (puncing limit) to the height for plain concrete footing. A good (safe and economic) height of the RC footing is a half of the height for plain concrete footing $$h_{\rm RC}\cong h_{\rm PC}/2$$ ### Design – Effective loading area After we design the footing height, we can calculate the real effective loading area $$A_{eff} = b(b - 2e)$$ $$e = \frac{M_{Ed} + H_{Ed}h}{N_{Ed} + G_{0,d}}$$ $$G_{0,d} = b^{2}h \cdot 25 \cdot 1.35$$ Use the height designed for the RC footing (see previous slide) and NOT the height of the PC footing nor the estimation of height used in the design of width! #### Design – Reinforcement We design the reinforcement in the same way as in beams. We must use the real effective loading area calculated for the RC footing! Do NOT use the value for PC footing nor the value used during the design of the footing width! $$\sigma_d = \frac{N_{Ed}}{A_{eff}}$$ Use diameter 14 to 20 mm. Design: $X \times \emptyset Y (A_{s,prov} = ...)$ #### Assessment The designed footing must be assessed using two conditions. - the **bending moment must be smaller than the load-bearing capacity of reinforcement**. - the stress in the soil must be smaller than the soil resistance. #### Assessment – Reinforcement We assess the bearing capacity of the footing cross-section in the same way as in beams $$x = \frac{A_{s,prov}f_{yd}}{0.8bf_{cd}},$$ $$z = d - 0.4x,$$ $$M_{Rd} = A_{s,prov}f_{yd}z.$$ We verify the footing by assessing $$M_{Ed} \leq M_{Rd}$$. Use the bending moment calculated for the RC footing! Do NOT use the moment calculated for the PC footing. #### Assessment – soil stress The compressive stress in the soil must be smaller than the soil resistance $$\sigma = \frac{N_{Ed} + G_{0,d}}{A_{eff}} \le R_d.$$ We must use the real self-weight and real effective loading area of the RC footing! Do NOT use the values calculated for PC footing nor the values used during the design of the footing width! #### Assessment If any of the conditions are not satisfied, the footing should be redesigned. In the homework, only propose how you would change the design. Do not recalculate the HW. ## 4) Drawings #### Drawings For the **plain concrete footing**, draw the **shape of the footing** (in scale with dimensions). For the **reinforced concrete footing**, draw the **sketch of reinforcement** – see next slide. Drawings - reinforcement Starting reinforcement for columns (same as the column reinforcement) Ties – see column reinforcement (middle part) Shapes of the designed rebars LIST OF REINFORCEMENT Item Rebar rebars [m] Ø16 Ø6 Ø16 18,80 Ø6 1 460 Ø16 98,40 Total length [m 4,38 117,20 Unit weight [kg/m] Weight of steel [kg] 0,97 184,94 Total weight of steel REINFORCEMENT DRAWING -REINFORCED CONCRETE PAD FOOTING WT 1911/12 Prepared by: JARA CIMRMAN Checked by: prof. KLOKNER List of reinforcement (not needed in the HW) Drawing title Transverse reinforcement (not needed in the HW) REINFORCEMENT FOR TRANSVERSE STRESSES (IF REQUIRED ACCORDING TO STRUCTURAL ANALYSIS! (2) TIE Ø6 à 300 mm L=1460 mm ③ Ø16 à 150 mm;L=3280 mm Notes · MATERIALS: CONCRETE C20/25 STEEL B500 COVER DEPTH 50 mm AXIAL DIMENSIONS OF REBARS ## Th4) PC vs RC footing # Theory #### PC vs RC footing In a PC footing, the height is bigger, load-bearing angle is approximately 60°, and the **tensile stresses are small** (smaller than the tensile strength of concrete). In a RC footing, the height is smaller, load-bearing angle is approximately 30° to 45°, and the **tensile stresses are big** (bigger than the tensile strength of concrete), and therefore, we must design a reinforcement to transfer the tensile stresses. Without reinforcement, the angle would be 60°. The reinforcement changes the load-bearing angle. ## thank you for your attention #### Recognitions I thank **Assoc. Prof. Petr Bílý** for his original seminar presentation and other supporting materials from which this presentation was created.