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ABSTRACT 

 

Currently, safety assessment is not consistently considered throughout Eurocode 3, mainly due to lack 

of guidance and existing databanks containing information on distribution of relevant basic variables 

and steel properties. In addition, some rules are not thoroughly validated, leading to higher 

uncertainties. 

In establishing the partial safety factor - γM of a design procedure, scatter related to material and 

geometrical properties may be isolated from resistance model. Simplified safety assessment 

procedures are analysed and further tested in which the basic variables are assumed independent from 

each other, with basis on EN 1990 safety assessment procedure.  

In this dissertation, firstly, a theoretical overview is proposed in order to introduce the basic principles 

in the probability theory; secondly, the basic principles of design codes are presented, focusing on the 

current European design codes EN 1990 to EN 1999. The design methodologies are listed and their 

background is discussed, and furthermore focus is given to the procedures applicable to Eurocode 3. 

The safety assessment procedure, given in Annex D of EN 1990 is also presented and its theoretical 

background is clarified. 

Subsequently, an analytical review of existing methodologies for safety assessment of design rules for 

steel structures is carried out. The procedures are presented and their field of application is detailed. 

Furthermore, numerical validation of simplified procedures, based on assumed distributions of basic 

variables such as material and cross-section properties, is performed focusing on stability failure 

modes, in particular flexural buckling of columns. 

In addition, a numerical example is presented, which aims at further clarifying latter methodologies. 

Sensitivity analysis is performed in order to assess the influence of different basic variables. In this 

example, statistical distributions of the imperfections are also considered. 

Finally, the statistical dependence of basic variables is discussed, based on correlation between yield 

stress and plate thickness. In order to obtain a reasonable correlation coefficient, statistical data from 

real experiments is used. 

This dissertation is part of European research project SAFEBRICTILE RFS-PR-12103 – SEP nº 

601596, where safety assessment procedure is developed for brittle to ductile failure modes. 

Therefore, it is considered a valuable contribution for achieving the project goals and further 

improvement of the design methodologies in the Eurocodes. 
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NOTATIONS 

Latin upper case letters 

Cov(.) Covariance 

E(.) Mean value 

E Event 

Ed Design value of the actions 

FX Cumulative distribution function for the random variable X 

P(.) Probability 

Pf Probability of failure 

Rd Design value of the resistance 

S Certain event 

Var(.) Variance 

VX Coefficient of variation 

Vδ Estimator for the coefficient of variation of the error term 

X Random variable 

mX  Array of mean values of basic variables 

nomX  Array of nominal values of basic variables 

 

Latin lower case letters 

b Correction factor 

fX(x) Probability density function for the random variable X 

)(Xgrt  Resistance function used as a design model 

ndk ,  Design fractile factor  

n Number of experiments or numerical results 

dr  Design value of the resistance 



 

European Erasmus Mundus Master

Sustainable Constructions under natural hazards and 

catastrophic events

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC

 

viii                                                                                                                                  Trayana Tankova 
 

 

er  Experimental resistance value 

nr  Nominal value of the resistance 

tr  Theoretical resistance determined with )(Xgrt  

s Estimated value for the standard deviation σ 

sΔ Estimated value for the standard deviation σΔ 

x  Estimated value for the mean value 

 

 

Greek upper case letters 

Δ Logarithm of the error term δ 

  Estimated value for E(Δ) 

Φ cumulative distribution function (CDF) for the standard normal distribution 

 

 

Greek lower case letters 

αE FORM (First Order Reliability Method) sensitivity factor for effects of actions 

αR FORM (First Order Reliability Method) sensitivity factor for resistance 

β reliability index  

F Partial factor for actions, also accounting for model uncertainties and dimensional 

variations 

f Partial factor for actions, which takes account of the possibility of unfavorable 

deviations of the action values from the representative values 

M Partial safety factor for a material property also accounting for model uncertainties 

and model variations 

*
M  Corrected partial safety factor for resistances 

m Partial factor for a material property 
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Rd Partial factor associated with the uncertainty of the resistance model 

Sd Partial factor associated with the uncertainty of the action and/or action effect model 

δ Error term 

δi Observed error term for test specimen i 

δx Coefficient of variation of the random variable X 

λ Mean value of lnX 

μx Mean value of the random variable X 

ρ Correlation coefficient 

ξ Standard deviation of lnX 

σ Standard deviation 

σΔ2 Variance of the term Δ 

σX Standard deviation of the random variable X 
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1 INTRODUCTION 

In real world engineering problems, uncertainties are unavoidable. This issue fully applies to 

structural engineering. Engineers face problems concerning deviations from their models as well as 

deviations from the material and geometrical properties on an everyday basis. In this sense, it is 

important to recognize those problems and to deal with them in an efficient manner. For many years, a 

way to deal with this problem is using design codes, which incorporate the scatter due to randomness 

of reality.  

 

In this thesis, it is aimed to compare various methodologies for the safety assessment of stability 

design rules and the corresponding safety factor γM on the basis of EN 1990 [1] and its Annex D. The 

main objective of this comparison is to support the preparation of clear and unambiguous guidance for 

the development and assessment of design rules in Eurocode 3 [2]. 

 

The structure of this work is the following: 

 Firstly, a brief theoretical overview is presented, in order to introduce the reader to the 

theoretical background of the subject;  

 Secondly, an overview of the basis of structural design according to the Eurocodes  is 

presented; 

 Subsequently, simplifications for safety assessment of design rules are explained – the 

methods are briefly summarized and differences between them are emphasized; 

 Consequently, a numerical assessment of the possible alternatives is performed and 

further discussed based on flexural buckling of columns; 

 Furthermore, an example is provided in order to illustrate the application of the various 

alternatives; 

 Finally, an attempt to consider statistical dependence between basic variables is 

provided, focusing on correlation between yield stress and plate thickness; 

  





European Erasmus Mundus Master 

Sustainable  Constructions  under  natural  hazards  and 

catastrophic events 

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC 

 

 

Trayana Tankova                                                                                                                                   3  
 
 

2 THEORETICAL OVERVIEW 

The safety assessment is performed due to the randomness of the relevant basic variables. Therefore, 

in this section, it is intended to briefly clarify the theoretical background of probability and statistical 

concepts (as proposed in [3]). The following main topics are included: 

 Uncertainties; 

 Fundamentals of probability theory; 

 Probability distributions; 

 Introduction to statistics; 

 Covariance and correlation; 

 Moments of functions of random variables; 

 Regression analysis; 

2.1 UNCERTAINTY IN ENGINEERING 

Uncertainties are existing in engineering problems and are clearly unavoidable. The available data is 

often incomplete or insufficient and inevitably contains variability. Moreover, the design 

methodologies used to estimate and/or predict reality lie on certain assumptions and simplifications, 

and therefore introduce additional uncertainty. In practice, two broad types of uncertainties are 

recognized: i) aleatory uncertainty associated with the randomness of the underlying phenomenon that 

is demonstrated as variability in the observed information; ii) epistemic uncertainty associated with 

the imperfect models of the real world due to insufficient or imperfect knowledge of the reality; 

Many phenomena which are of engineering focus contain randomness, in a sense that measurements 

or experiments differ one from each other even though they are performed in identical conditions. In 

other words, there is a range of occurrence, and even certain values may occur more frequently than 

others. The variability characteristics in such data or information have a statistical nature. For 

example, aleatory uncertainty can be the variability of the yield stress in steel, deviations of the 

geometrical properties, etc. Steel profiles are produced in the same conditions; the tests are performed 

using the same test set up, usually standardized; however, not always the same measure is found, but 

rather a range of measurements. This problem is of particular interest in this thesis. Another example 

can be the compression strength of concrete which is highly variable. The parameters which influence 

the production of concrete are many and some of them are hard to control. Therefore, the resulting 

strength can be found with a high coefficient of variation. 

As already mentioned, the other main type of uncertainty is associated with the imperfect knowledge 

or the so-called epistemic uncertainty. In engineering problems, the solutions always rely on idealized 

models of the real world. These models –mathematical, laboratory, numerical etc. – are imperfect 

representations of the real problem. They are inaccurate with some unknown degree of error and thus 

are imposing uncertainty. This uncertainty sometimes can be more significant than the aleatory 

uncertainty. An example of epistemic uncertainty is every design rule that is written in the design 
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code. Design rules have uncertainties incorporated, although these rules are calibrated in a way that 

the variability of this uncertainty aims to be always safe-sided. 

An efficient way to deal with uncertainties is given by the probability theory and statistics. They can 

be used effectively to “quantify” the uncertainty and therefore to provide aid in decision making 

process. In the following sections, the essentials of probability theory are briefly summarized.  

2.2 FUNDAMENTALS OF PROBABILITY THEORY 

The probability can be considered as a numerical measure of the likelihood of occurrence of an event 

within a set of all possible alternative events.  Therefore, an event can be identified as a main unit in 

the formulation. Subsequently, the first requirement in the formulation of the probabilistic problem is 

the identification of the set of all possibilities i.e. the probability space for the event of interest. 

Probabilities are always associated with specific events within certain probability space and they are 

only valid for that specific probability space. Hence, each probability space can contain many events, 

and each event has certain probability of occurrence in that probability space. 

In order to formulate the probabilistic problem, elementary set theory is used. Following the set 

theory, the set of all probabilities in a probabilistic problem is collectively defined as a sample space, 

and each of the individual possibilities is a sample point. An event is recognized as a subset of the 

sample space.  

The sample spaces can be discrete or continuous, as the discrete space can be finite or infinite. The 

following special events are recognized within the sample spaces: 

 Impossible event – φ, it is an even with no sample point. This event can be also referred as an 

empty set; 

 Certain event – S, it is the event containing all sample points in the sample space, therefore 

the certain event is the space itself; 

 Complementary event E , of the event E which contains all sample points which are not in E; 

The concept is further clarified by Figure 2.1, in which the so-called Venn diagram is used to 

illustrate the sample space S and its events. Moreover, the union or intersection of events may be of 

interest, as shown in Figure 2.2. Those operations are similar to sum and multiplication of numbers, 

however they are not of special interest here and they will not be further discussed. 

 

Figure 2.1Venn diagram of sample space S 
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Figure 2.2Examples of union and intersection events 

 

Another type of events is the mutually exclusive events, those are events which cannot occur 

simultaneously and their corresponding subsets do not have intersections. An example of mutually 

exclusive events is the steel stress being above and below the yield strength at the same time. The 

mutually exclusive event should not be confused for statistically independent events. The statistically 

independent events are those whose occurrence does not exclude the occurrence of the other. They 

might exist simultaneously; however, there is no dependence, on the contrary in case of mutually 

exclusive events, the occurrence of both is impossible.  

 

As any other mathematical model, the theory of probability is based on few axioms. The axioms of 

the probability theory are: 

 Axiom 1: for every event E in a sample space S, there is a probability: 

 0)( EP  (2.1) 

 Axiom 2: the probability of the certain event S is: 

 0.1)( SP  (2.2) 

 Axiom 3: for two events E1 and E2 which are mutually exclusive, the following can be 

written: 

 )()()( 2121 EPEPEEP   (2.3) 

2.3 PROBABILITY MODELS 

When dealing with probabilities, the basic variables are defined as a range of possible values, unlike 

the deterministic problems where the variables are associated with actual values. Therefore, when 

using probabilities the random variables are defined as upper case letters. If X is a random variable 

then X=x, X>x or X<x represent different events, where x belonging to (a;b) is the mapping of the 

event. In Figure 2.3 the concept of mapping is defined, as the sample space was previously clarified 

when dealing with sets. In order to apply the probability concepts, it is more convenient to use 

intervals rather than the sets as explained in the previous section.   
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An example of two defined events is presented on Figure 2.3: 

  bXaE 1   

  dXcE 2  

And their intersection is found as: 

  bXcEE  21   

  

Figure 2.3Mapping through X 

  

The random variables, previously defined, are associated with probability measures called probability 

distributions or “probability law”. For each random variable, its probability distribution can always be 

described by its cumulative distribution function (CDF): 

 xxXPFX  )(  (2.4)  

In case that X is a discrete random variable, its probability distribution is described by probability 

mass function (PMF), where the CDF can be found as: 

 



xx

iX
xx

iX

ii

xpxXPF )()(  (2.5) 

On the contrary, if X is continuous, it is defined in an interval, therefore for specific value X=x, only 

the probability density can be obtained, there is no probability. Hence, for continuous random 

variables the probability law is described by the probability density function, which is denoted as fX(x) 

such that:  
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   
b

a

XX xFdxxfbXaP )()(
 (2.6) 

   



a

X

b

X dxxfdxxfbXaP )()(  (2.7) 

  

Every function used to describe the probability distribution of a random variable should satisfy the 

axioms of the probability theory previously listed, in a way that: 

 0)( XF  and 0.1)( XF  

 0)( xFX  for all x; 

 )(xFX is continuous with x;  

Any random variable in practice can be fully described by its probability distribution and each needed 

parameter can be obtained from the CDF, although in reality it is often difficult to know the exact 

distribution of a variable. Therefore, assumptions on the distribution can be made based on its main 

descriptors.  

The random variable is associated with a range of values, thus a central value would be of specific 

interest. Such value is the so-called mean value which represents the weighted average of the random 

variable (it is defined as weighted average, since for x of X there is an associated probability). The 

mean value is often denoted with E(X) and it can also be referred as expected value. It can be found 

from the following expressions: 

 XX dxxxfXE  




)()(  (2.8) 

 X
x

iXi

i

xpxXE 


)()(  (2.9) 

Another very useful parameter is the degree of the dispersion of the random variable. It is of special 

interest, since it shows how close/far from the mean value are all the values spreading. Therefore, this 

descriptor should be defined as a function of the mean value. This measure is known as the variance 

of the distribution or the second central moment. It can be found using the following expressions for 

the continuous and discrete variable respectively: 

 




 dxxfxXVar XX )()()( 2  (2.10) 

 



ix

iXiX xpxxXVar )()()( 2  (2.11) 
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By expanding the expressions one can find: 

 
22 )()( XXEXVar   (2.12) 

For practical purposes, the measure of dispersion is referred to the square root of the variance and it is 

called standard deviation: 

 )(XVarX   (2.13) 

Since its quantity as a single value might not give significant understanding about the degree of 

dispersion, it is normalized with regard to the mean is used and it is called coefficient of variation: 

 
X

X
X 

   (2.14) 

Finally, there are several widely known distributions, whose parameters are previously computed and 

organized in so-called probability tables, which makes them very attractive to use. 

2.4 PROBABILITY DISTRIBUTIONS 

2.4.1 THE GAUSSIAN (NORMAL) DISTRIBUTION 

The Gaussian distribution is probably the most famous and widely used probability distribution. Its 

PDF for a continuous random variable X is: 

 );(
2

1
exp

2

1
)(

2



















 

 x
x

xf X 



 (2.15) 

where µ and σ are the parameters of the distribution, in this particular case the mean and the standard 

deviation. 

A Gaussian distribution with parameters µ=0 and σ=1.0 is called Standard Normal Distribution and 

its PDF is given by: 

 );(
2

1
exp

2

1
)( 2 



 xxxf X 

 (2.16) 

Its CDF is denoted as Φ, and there are tabulated values of Φ. The probability of an event can be 

visualized in Figure 2.4 as the shaded area. In addition, by having the probability, the inverse function 

of Φ may be used: 

)()( sFs S  

)(1 ps p
  
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Figure 2.4 The Standard Normal Distribution 

Moreover, due to the symmetry of the PDF of the standard normal distribution about zero, then the 

following can be written: 

 )(1)( ss    

A convenient way to use the CDF of the standard normal distribution can be derived from Eq.2.7. The 

probability can then be found using the expression: 

   





 







 






 ab

bXaP  (2.17) 

2.4.2 THE LOGNORMAL DISTRIBUTION 

The lognormal distribution is also a very popular probability distribution. The PDF of the lognormal 

distribution can be found as: 

 );0[
ln

2

1
exp

2

1
)(

2




















 
 x

x

x
xf X 




 (2.18) 

The parameters of the distribution are λ and ξ, which are respectively the mean and standard deviation 

of lnX. It can be easily proven that for a random variable X with a lognormal distribution and 

parameters of the distribution λ and ξ, then lnX is normal with mean λ and standard deviation ξ, i.e. 

N(λ ,ξ). This is a valuable feature which can be used similarly to Eq.(2.17): 

   






 








 






 ab

bXaP
lnln

 (2.19) 

It was seen that both distributions can be connected, and therefore the transformation expressions can 

be derived from the normal to lognormal parameters and vice-versa, using: 

   2

2

1
ln   X  (2.20) 
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  2

2

2 1ln1ln X
X

X 



 





















  (2.21) 

2.5 INTRODUCTION TO STATISTICS 

In the previous sections, the probability theory was summarized. In the real life, however, distribution 

of variables is based on observation of data, i.e. the theoretical distributions are chosen in a way to fit 

the real behaviour. Moreover, the observed data is usually a test sample or many test samples which 

are part of the population of the observed parameter, and therefore, additional error due to the limited 

information should be avoided. The statistics constitutes methods to link the real observations with 

probability theory. Those principles are based on estimates of the real parameters of the distribution. 

There are different methods for estimating the parameters, however they all should satisfy certain 

requirements: 

 Unbiasedness – if repeated estimations of the parameter are performed and their mean is 

equal to the parameter, then the estimator is called unbiased; 

 Consistency – if the sample size approaches infinity, then the estimator tends to the value of 

the parameter; 

 Efficiency – one estimator is more efficient than the other, if the variance of the first is 

smaller than the second; 

 Sufficiency – an estimator is considered sufficient, if it can capture all the information in a 

sample that is relevant  for the estimation of the parameter; 

 

Figure 2.5 Statistics 

In reality, however, it is hardly possible to satisfy all of the above parameters of an estimator. Usually, 

the properties are chosen with respect to the specific needs for estimation. 

Previously, it was presented that the mean and standard deviation of a distribution are of specific 

interest and hereby, the unbiased estimators for the sample mean and the sample variance are 

presented: 
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 
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 (2.22) 
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1
xx

n
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n

i
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


  (2.23) 

 

 

2.6 COVARIANCE AND CORRELATION 

When there are two random variables X and Y, there may be a relationship between them. In 

particular, the presence or absence of a linear statistical relationship is determined as firstly the joint 

second moment of X and Y is observed: 

 








 dxdyyxxyfXYE YX ),()( ,  

In case, the variables are statistically independent, the equation becomes: 

)()()()()()(),()( , YEXEdyyyfdxxxfdxdyyfxxyfdxdyyxxyfXYE YXYXYX    
























 

The joint central moment is the covariance of X and Y, i.e.: 

)()()()])([(),( YEXEXYEYXEYXCov YX    

The significance of the covariance can be studied from the latter equation. If the covariance is large 

and positive, then the values of X and Y tend to be both large or both small relatively to their 

respective means, whereas if the covariance is large and negative, the values of X tend to be large 

when the values of Y are small and vice versa, relatively to their means. However, if the covariance is 

small or zero, there is weak or no (linear) relationship between the values of X and Y; or the 

relationship may be non-linear. Therefore, the covariance is a measure of linear relationship between 

the variables. For practical purposes, a normalized value of the covariance is often used in the 

literature – so called correlation coefficient, which is defined as: 

 
YX

YX

YXCov


 ),(

,   (2.24) 

The correlation coefficient can range between -1 and 1.  Its physical representation can be observed in 

the Figure 2.6 and Figure 2.7. 



 

European Erasmus Mundus Master

Sustainable Constructions under natural hazards and 

catastrophic events

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC

 

12                                                                                                                                  Trayana Tankova 
 

 

 

Figure 2.6Correlation coefficient 

 

 

Figure 2.7 Correlation coefficient 

Furthermore, an estimation of the correlation coefficient (as proposed in [3]) is found based on a set 

of n pairs of observations: 

 
YX

n

i
ii

YX ss

yxnyx

n







1

, 1

1  (2.25) 

where x , y , Xs  and Ys are the sample means and sample standard deviations respectively. 

2.7 MOMENTS OF FUNCTIONS OF RANDOM VARIABLES 

Usually, in real life engineering problems, functions of basic variables are used. The probability 

distributions of a random function are usually difficult to derive analytically. In such cases, Monte 

Carlo simulations can be used. However, it is possible to use the moments of the distribution, 

particularly the mean and variance, of the function as an approximation of the probability distribution. 
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This approximation approach is often sufficient for practical purposes, even though the real 

distribution is left undetermined. Those moments are functionally related to the moments of the 

individual basic variables and therefore may be derived approximately as functions of the moments of 

the basic variables. 

A function of several random variables Y is considered, 

),...,,( 21 nXXXgY   

where the approximate mean and variance of Y can be obtained as follows: 

The resistance function can be simplified (as proposed in [3]) by expansion in a Taylor series about 

the mean values: 

...))((
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1
)(),...,(
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1
21










 
 

n

i

n

j ji
XjXi

n

i i
XiXXX XX

g
XX

X

g
XgY

jiin
  

If the series is truncated after the linear terms, i.e., 

 
 
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XiXXX X
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)(),...,(
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  (2.26) 

the first order mean and variance are obtained as follows: 

 ),...,()(
21 nXXXgYE   (2.27) 
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In case that the basic variables Xi and Xj are not correlated (i.e. statistically independent), in other 

words ρi,j=0, then the variance becomes: 

 

2

1

2)( 

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










n

i i
i X

g
YVar   (2.29) 

The latter equations may also be referred as “propagation of uncertainty”. It is observed that the 

variance is a function of both the variances of the basic variables and of the sensitivity of the 

sensitivity coefficients as represented by the partial derivatives. 

2.8 REGRESSION ANALYSIS 

If two random variables are considered, there may be a relationship between them. Moreover, the 

presence of randomness makes the relationship not unique and thus it leads to scatter. The two 

variables can be plotted together in a scattergram type graph, see Figure 2.8.  
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Figure 2.8 Scattergram 

where the equation of a straight line passing through the origin is given by:  

 bXY   (2.30) 

There is a trend for the values of Y to increase with increasing X. However, no sample point of X will 

be accurate and representative enough to give absolutely perfect information on Y. A line through the 

origin (regression line) may be used to approximate the trend, however many such lines exist. In order 

to minimize the cumulative error and assuming that the variance of the residual ε is constant, a least 

square calculation is usually performed, based on the following quadrature of the residual: 

 
22 )(  ii bxy   (2.31) 

Minimization of the error is obtained by setting the derivative of ε2 with respect to b to zero. The 

linear regression coefficient b is then found: 
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However, the variance of -ε may not be constant. In such cases equations (2.31) and (2.32) become: 

 
22 )(  iix bxyw   (2.33) 
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where: 
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If w is proportional to X then expression (2.34) can be rewritten as: 

 
x

y

x

y

xxk

xyxk
b

n

i
i

n

i
i

n

i
ii

n

i
iii



















1

1

1

2

1

)(

)(

  (2.36) 

In case that wx is proportional to rt
2 then expression (2.34) becomes: 
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  (2.37) 

This last assumption is correct if X is proportional to Y, excluding the sampling error. Furthermore, 

the three estimators for b (2.32), (2.36) and (2.37) are all unbiased. As it is explained in [4], the choice 

of approximation is a question of precision: as the first one should be used when the standard 

deviation of the residual is constant (2.32); the second one when the standard deviation of the residual 

is proportional to X (2.36); and the third one when the standard deviation of the residual is 

proportional to X2 (2.37). 
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3  BASIS OF DESIGN 

The structural reliability may be verified using fully probabilistic approach or partial factor method. In 

practice, the partial factor method is often applied, since it incorporates the variability in the design 

code and offers a clear guidance to the engineer. The fully probabilistic methods are not as frequently 

used because usually, there is not sufficient information for their application, moreover the outcome 

depends on the person who performs the analysis and therefore the level of safety between different 

analyses, would be left undetermined. A model application of design code is given by [5] where the 

fully probabilistic approach is adopted.  

However, here focus is given to the current structural design codes in Europe are EN 1990 to EN 

1999. The basic document of this family of codes is EN 1990 – Basis of structural design [1]. It 

establishes principles and requirements for the safety assessment of structures; it describes the basis of 

their design and provides guidelines for structural reliability.  

In this chapter, a brief introduction to the basis of design as well as its background is presented. 

A procedure for design assisted by testing is provided in the scope of EN 1990 – given in its Annex D. 

The latter procedure is based on a semi – probabilistic approach. Its theoretical background is also 

summarized in the following subsections. 

 

3.1 GENERAL OVERVIEW OF EN 1990 

All parts of the Eurocodes are based on the partial safety factor method. EN 1990 states the basis of 

the method. The partial safety factor method recognizes relevant design situations. The safety factors 

are used on load and on the resistance sides and the design is considered adequate whenever the 

appropriate limit states are verified: 

 dd RE   (3.1) 

where: 

Ed – is the design value of the actions; 

Rd – is the design value of the resistance; 

 

The safety factors are established based on a statistical evaluation of experimental data; or based on a 

calibration to experience derived from a long building tradition. The partial safety factors should be 

calibrated such that the reliability level is as close as possible to the target reliability.  The calibration 

of safety factors can be performed based on full probabilistic methods, or on First Order Reliability 

Methods. The full probabilistic approach is often not possible to use due to the lack of sufficient 

statistical data.  
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However, in [6] it is reported that the analysis can be based on the Bayesian interpretation of 

probabilities, where the probabilities are evaluated using available data and previous knowledge. It is 

believed that if the analysis is carried out carefully and based on large number of data points, the 

results would be correct.  

Figure 3.1 illustrates the various possible reliability methods according to EN 1990 [1]. 

 

 

Figure 3.1 Possible Reliability methods [1] 

 

The level of safety in EN 1990 is chosen according to Consequence classes (CC) defined in Annex B. 

The consequence classes establish the reliability differentiation of the code by considering the 

consequence of failure or malfunction of the structure. The Consequence Classes (CC) correspond to 

Reliability classes (RC), which define the target reliability level though the reliability index β. This 

index defines the probability of failure, given by: 

 )( fP  (3.2) 

where Φ is the cumulative distribution function (CDF) for the standard normal distribution.  

The reliability index covers the scatter on both resistance and action sides. It can be expressed in 

terms of number of standard deviations as shown on Figure 3.2. 
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Figure 3.2 Reliability index β [1] 

 

According to [7], “the target reliability index or the target failure probability is the minimum 

requirement for human safety from the individual or societal point of view when the expected number 

of fatalities is taken into account. It starts from an accepted lethal accident rate of 10-6 per year, 

corresponding to a reliability index 1 = 4.7”. The reference period (the design life) depends on the 

Reliability class, i.e. for most of the structures it is 50 years which leads to β=3.8.  

 

The probability of failure as expressed in Eq. (3.2) includes the loading and the resistance parts. 

However, EN 1990 allows one to separate the scatter due to loading and resistance in terms of 

coefficients αE and αR, respectively (see Figure 3.2), where: 

 0.122  ER    (3.3) 

The partial safety factors related to the resistance are determined based on the following expression: 

   )( rdrrP    (3.4) 

where r stands for resistance and rd is the design resistance. The factor αR may be assumed to have a 

fixed value of 0.8 in case the standard deviation of the load effect and the resistance do not deviate 

very much (0.16<σE/σR<7.6) [1]. This simplification is crucial for a standardized determination of the 

partial safety factors for the resistance side without the need to simultaneously consider the action 

side.  
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3.2 METHODOLOGICAL ASSUMPTIONS FOR DESIGN RESISTANCE 

3.2.1 DESIGN RESISTANCE 

In Section 6 of EN 1990, three different alternatives for the evaluation of the design resistance are 

proposed, as follows: 

 

METHOD 1 (clause 6.3.5(1)): 

On the resistance side, the general format is given in expressions (3.5)  to (3.8).  
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where: 

γRd –partial safety factor covering uncertainty in the resistance model, plus geometric deviations 

if these are not modeled explicitly; 

Xk,i – characteristic value of material property i; 

ηi – conversion factor, which can alternatively be incorporated in γM (see expression (3.7)); 

ad – design value of geometrical data, it can be represented by nominal values in cases not 

severely affected by geometrical shape deviations. 

 nomd aa    (3.6) 

Expression (3.5) may be simplified as follows: 
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  (3.8) 

 

Further simplifications may be given for different structural materials but they should not reduce the 

level of reliability [1]. 

 

 

i,mRdi,M  
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METHOD 2 (clause 6.3.5(3)): 

Alternatively to (3.7), the design resistance may be obtained directly from the characteristic value of 

product or material resistance, without explicit determination of the design values for individual basic 

variables: 

 
M

k
d

R
R


  (3.9) 

The latter is applicable to products or members made of a single material and it is also used in 

connection with Annex D of EN 1990. It is noted that this simplified approach is used for the 

evaluation of the design resistance of most failure modes in Eurocode 3 [2].  

 

METHOD 3 (clause 6.3.5(4)): 

Alternatively to expressions (3.7) and (3.9), for structures or structural members that are analysed by 

non-linear methods and comprise more than one material acting together, the following expression 

can be used: 
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  (3.10) 

 

In section 2.3.4 of EN 1993-1-1 [2], it is stated that the evaluation of design resistance should be 

based on equations (3.9) or (3.10).  

The method proposed by expression (3.10) will not be addressed in this study. 

 

3.2.2 PARTIAL FACTORS IN EN 1990 

The following partial factors are defined in EN 1990: 

- F – Partial factor for actions, also accounting for model uncertainties and 

dimensional variations; 

- f – Partial factor for actions, which takes account of the possibility of unfavorable 

deviations of the action values from the representative values; 

- Sd - Partial factor associated with the uncertainty of the action and/or action effect 

model; 

- M – Partial safety factor for a material property also accounting for model 

uncertainties and model variations; 



 

European Erasmus Mundus Master

Sustainable Constructions under natural hazards and 

catastrophic events

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC

 

22                                                                                                                                  Trayana Tankova 
 

 

- m – Partial factor for a material property; 

- Rd – Partial factor associated with the uncertainty of the resistance model; 

 

The relation between individual partial factors in the Eurocodes is schematically shown in Figure 3.3: 

 

Figure 3.3Relation between individual partial factors [1] 

 

In accordance with Figure 3.3 and following  [8], 

  F   f Sd   (3.11) 

  M   m Rd  (3.12) 

Expression (3.12) is equal to the one given in (3.8) and may be used in conjunction with (3.7). 

 

3.3 SAFETY ASSESSMENT PROCEDURE – ANNEX D DESIGN ASSISTED BY TESTING  

Annex D of EN 1990 gives a semi-probabilistic procedure for the safety assessment of design 

methods. According to  [8], Annex D distinguishes several types of tests depending on their purpose 

that may be classified into the two following categories: (i) results used directly in design; (ii) control 

or acceptance tests. According to the objectives here, the procedures for the statistical determination 

of resistance models and procedures for deriving design values from tests of type (i) are detailed in the 

following. 

Various types of uncertainties are present in a resistance model and they are unavoidable. As it is 

explained in [3], they can be associated with inaccuracies of the prediction of the reality or with the 
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natural randomness. In order to quantify the uncertainties testing is used. It can be done by numerical 

or experimental testing.  

The procedure proposed in Annex D is used to evaluate the safety on the resistance side. The 

resistance function rt is the theoretical value of the strength. 

 )(Xgr rtt   (3.13) 

The theoretical estimate rt is compared with the experimental one re, which is based on numerical or 

experimental test results. The procedure considers both types of possible errors, due to epistemic and 

aleatory uncertainties, and it is presented in the subsequent subsections. 

 

3.3.1 ERROR RELATED TO THE DESIGN MODEL 

Design models or “resistance functions” are usually theoretical expressions which include as many 

relevant physical parameters (i.e. “basic variables”) as possible and reasonable. As the design model 

is introduced in terms of rt, Eq. (3.13), it should be further verified via numerical or experimental tests 

- re. The plot in Figure 3.4 is similar to Figure 2.8, yet using the notations adopted in Annex D of EN 

1990.  

 

 

Figure 3.4 Scatter due to epistemic uncertainty 

 

where the equation of the regression line passing through the origin is given by:  

  te brr   (3.14) 

In Annex D, the assumption that the variance of the residual is constant is adopted, and therefore the 

regression coefficient b is found from (3.15) (which is coming from expression (2.32)) as previously 

discussed in section 2.8, equation (3.15) can be considered unbiased estimator for the regression 

analysis. 
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 (3.15) 

 

The scatter in Figure 3.4 represents the epistemic uncertainty which is related to the differences that 

arise between the adopted design model and the reality. This variation is caused by the simplifications 

of every design model when compared to reality. 

The differences are considered in terms of the error δi: 
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    (3.16) 

Assuming that the resistance distribution follows a lognormal distribution, the logarithm of the error δi 

is given by: 

   
)ln( ii 

   (3.17) 

The mean value of Δ is found from: 
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i
in 1

1
    (3.18) 

The estimate of the error variance is: 
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    (3.19) 

Finally, the estimator for the coefficient of variation of the error term δi is given by: 

 1)exp( 2  sV     (3.20) 

 

3.3.2 ERROR RELATED TO THE BASIC INPUT VARIABLES 

The aleatory uncertainty, accounting for the natural randomness, is associated with the basic input 

variables Xi – yield strength, ultimate strain, geometrical properties, etc.  

Considering the correction factor for the model variance, the resistance function (3.13) may be 

rewritten as: 



European Erasmus Mundus Master 

Sustainable  Constructions  under  natural  hazards  and 

catastrophic events 

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC 

 

 

Trayana Tankova                                                                                                                                   25  
 
 

 )...,( 21 nrt XXXbgr    (3.21) 

Furthermore, as previously presented in section 2.7, approximations about the moments of functions 

of random variables, can be found using expressions (2.27) and (2.29) (as proposed in [3]) by 

expansion in a Taylor series about the mean values. Hence the following expressions can be found, 

using the notations adopted in EN 1990; 

  

If the series is truncated after the linear terms, i.e., 
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, )()(   (3.22) 

the first order mean and variance are obtained as follows: 

 )()( mrt XbgrE    (3.23) 
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Expression (3.24) is based on the assumption that the basic variables Xi and Xj are statistically 

independent and is obtained from the truncated series of Eq. (2.29) as given in Eq. (3.22), otherwise 

more terms shall be included from Eq.(2.28).  

The sensitivity of the resistance function to the variability of the basic input parameters is considered 

through the coefficient of variation Vrt. In case that the resistance function is not very complex such as 

a simple product function, Vrt may be obtained as follows: 
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However, if the resistance function is expressed by a more complex function, then Vrt should be based 

on Eq. (3.24), leading to:  
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3.3.3 THE PARTIAL SAFETY FACTOR 

Finally, both uncertainties are combined in order to obtain the partial safety factor – γM. 

Expression (3.28) combines the effect of scatter due to design model and scatter due to the basic 

random variables, is obtained similarly to Eq. (3.26): 

 )1)(1()1( 222  rtr VVV    (3.28) 

The second order terms may be ignored if the coefficients of variation are small, leading to: 

 222
rtr VVV      (3.29) 

The standard deviations of the lognormal variables are given by: 

 )1ln( 2   VQ  (3.30) 

 )1ln( 2  rtrt VQ   (3.31) 

 )1ln( 2  rVQ    (3.32) 

From a probabilistic stand point, the design value of the resistance should satisfy the following 

relation, in case of large number of tests (n>30): 
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  (3.33) 

λr is  the lognormal mean and it can be found using the following relationship: 

   2

2

1
ln Qrmr    (3.34) 

so that 
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leading finally to: 

  25.0)( QQ
mrt

k
M

ReXbg

r





    (3.36) 

In this way, the design value of the resistance considers both uncertainties – the one due to the scatter 

of the basic input variables and the one related with simplifications introduced in the design model. It 

also corresponds to the selected reliability level β according to Reliability Classes and the 

corresponding Consequence Classes.  

The characteristic value of the resistance is the resistance function evaluated at nominal values of the 

basic input variables as follows: 

 )(, nomrtnomtk Xgrr    (3.37) 

In case of a limited number tests (say n<30) allowance should be made in the distribution of Δ for 

statistical uncertainties. The distribution should be considered as a central t-distribution leading to 

(3.38a). 

The design value of the resistance function based on the mean values of the input parameters is 

calculated, depending on the sample size used: 
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(3.38a)

(3.38b)

                                                                                                                       

Coefficients ,dk  and ndk ,  are design fractile factors, which can be obtained from Table 3.1. 

However; it should be noted that Table 2.1 is based on αRβ=3.04. 

 

Table 3.1Values for kd,n 

n 1 2 3 4 5 6 8 10 20 30 ∞ 

VX  

known 
4.36 3.77 3.56 3.44 3.37 3.33 3.27 3.23 3.16 3.13 3.04 

VX 

unknown 
- - - 11.40 7.85 6.36 5.07 4.51 3.64 3.44 3.04 
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The partial safety factor is then found: 

 
d

nomt
M r

r ,*    (3.39) 

 

The procedure proposed in Annex D of EN 1990 is summarized in Figure 3.5: 
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Figure 3.5Flow chart – Annex D 
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4 ALTERNATIVES FOR SAFETY ASSESSMENT 

4.1 ASSUMPTIONS 

The procedures described in section 3.3 are of general application. Consequently, since they have to 

cover different types of materials and different types of problems, they provide many alternative 

possibilities, leading to several possible implementations for a given problem. Furthermore, the 

framework is also necessarily complex, leading to difficult implementation in certain cases. These 

constitute a difficulty whenever it is necessary to compare two alternative design rules because 

different implementations will lead to different failure probabilities even when the basic data is the 

same.  Also, very often, the available data is not sufficient to characterize statistically all the relevant 

basic variables. Finally, carrying out a probabilistic analysis that includes all the relevant variability’s 

may be impossible because of the size of the required sample [9]. 

 

In this chapter, various procedures for the implementation of the methodology of Annex D are 

presented. They include a number of simplifications, starting from the simplest to the most complex 

and are proposed in the context of design models for the evaluation of the buckling resistance of steel 

members. 

 

Without loss of generality, in the following, it is assumed that a large number of experiments is 

available (at least 100 results). Also, whenever it is necessary to exemplify some detail using a 

specific stability phenomenon, the well-known example of flexural buckling of columns is used.  

In the context of the stability of steel structures, the following basic variables should be considered for 

the evaluation of the error related to the basic input variables (Vrt): 

- mechanical properties of steel 

- cross section and member dimensions 

- geometrical imperfections 

- residual stresses 

- load eccentricity. 

 

In steel structures, the variability of these variables contributes differently to the buckling resistance 

of steel members: 

- the variability of the mechanical properties of steel has a significant relevance, in 

particular the yield stress. They should be considered as random variables, 

bearing in mind that the nominal properties of steel are guaranteed values. 
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- the variability of the cross section dimensions and member lengths may be 

considered small or negligible in most cases  [8]. However, if a systematic 

deviation from nominal values is identified, they should also be considered as 

random variables. 

- The remaining basic variables listed above (geometric imperfections, residual 

stresses and load eccentricities) have a crucial effect on the buckling resistance. 

They could be considered explicitly as random variables in the design model but, 

because of the complexity of the stability design models, they do not appear 

explicitly in the stability design expressions. Consequently, they are usually 

considered implicitly in the models. Whenever relevant (e.g. advanced numerical 

models), these imperfections should be represented directly by their design values 

(clause 4.3(1) of EN 1990) or by values corresponding to some prescribed fractile 

of the available statistical distributions (clause 4.3(3) of EN 1990). 

 

The different alternatives presented in this chapter consider the variability of the (geometrical, 

material and loading) imperfections implicitly in the models. Hence, the first level of simplifications 

presented below consists of neglecting the error related to the first two basic variables, i.e., material 

and geometry. Table 4.1 summarizes the assumptions for each proposed simplified procedure. 

 

Table 4.1 Simplified procedures 

 P0 P1 P2 

Mech. Properties of steel 

(yield stress) 

X 
(approx.) 

X X 

Geometry   X 

 

 

Finally, it is noted that as a reference simplification, PROCEDURE 0 only considers model 

uncertainty and material (yield stress) uncertainties and calculates independently the partial safety 

factors for each of them according to expression (3.12) while the other two follow strictly the 

methodology of Annex D of EN 1990. 
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4.2 PROCEDURE 0 (P0) 

Figure 4.1 summarizes procedure P0. It only considers model uncertainty and material (yield stress) 

uncertainty and calculates independently (in an approximate way) the partial safety factors for each of 

them [9],[10]. Hence, (3.38b) is used with nominal values of material and geometrical properties 

leading to: 

  2
,

,

5.0exp

1

QQkRr

r

ndmd

nomt
Rd 

  (4.1) 

The material variability is considered independently from the design model and it is evaluated 

separately as follows: 

 
)V64.11(f

f

fym,y

nom,y
m 
   (4.2) 

 

 

Figure 4.1 - Procedure 0 
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Geometry is assumed with nominal values. 

 

According to Figure 4.1, Step 2, the following assumption is adopted in the construction of the 

regression line: 

 



n

i i,t

i,e
m r

r

n
R

1

1
   (4.3) 

This was applied in [9],[10], as previously proposed by [11] and [12]. It is noted that the adoption of 

different estimators for the regression line is a matter of precision. However, as the sample size tends 

to infinity, the difference between estimators becomes negligible [4].  

 

It is further noted that Procedure 0 presents some drawbacks for the evaluation of partial safety 

factors for stability problems, since it considers γRd and γm with the same weight, which is not true in 

cases with high slenderness. Nevertheless, besides its simplicity, it may be considered for other failure 

modes, e.g. ductile failure modes driven by plasticity. Finally, P0 does not ensure strict compliance 

with a predefined target failure probability.  

 

4.3 PROCEDURE 1 (P1) 

4.3.1 DESCRIPTION 

 

This procedure was also applied in [9],[10]. It constitutes a simplification of Annex D and also 

disregards the variability of geometry (ad = anom). It is performed on the basis of expression (3.9). The 

procedure is summarized in Figure 4.2. 

 

A further simplification is introduced with regard to the coefficient of variation of the (error of the) 

resistance function, Vrt, using expression (3.27a). It is simply assumed to be equal to the coefficient of 

variation of the yield strength. Annex D explicitly allows such assumption in cases where the 

resistance function is described by a simple product function, as explained before. 
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2
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fyrt f

VV
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  (4.4) 
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Figure 4.2 - Procedure 1 

 

 

The assumption of fy as the only basic variable (P1) is expected to be more inaccurate within the high 

slenderness range for stability problems, due to the fact that yield strength has no significant 

importance in that range. However, it is considered to be more adequate than P0 since it accounts for 

the propagation of the variability of the yield strength in the resistance function.  

 

 

4.3.2 ASSESSMENT OF THE CONSERVATIVE NATURE OF PROCEDURE 1 

Comparing P1 with the Annex D procedure and assuming that only the model and the yield stress 

variabilities are explicitly considered, the only difference consists then on the evaluation of Vrt. It 

would be useful if it could be proven that P1 is a safe-sided approach with regard to Annex D and also 

that the differences between the two methods are not significant. This is analytically proven in this 
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subsection for a realistic range of yield stress distribution and assumed realistic values of the model 

variability.  

 

Consider expression (3.36) that yields the partial safety factor M : 

  2
,

*

5.0exp)(

)(

QQkXbg

Xg

dmrt

nomrt

M 




  (4.5) 

 

Comparing P1 with Annex D shows that he terms )(),(, nomrtmrt XgXgb are the same regardless of 

the method used. Therefore, any differences between the two procedures are solely related to the 

following expression: 

  2
, 5.0exp

1

QQkd  

   (4.6) 

In addition, the procedure of Annex D evaluates partial safety factors *
,iM for each specimen, while 

P1 computes directly a total value for the sample. However, here, each value i, will be compared to 

the total value of P1. 

 

The following assumption is considered: large number of test results – more than 100. 

The following notation is adopted: 

 The coefficient of variation Vrt calculated using the procedure of Annex D with partial 

derivatives  is henceforth denoted as  Vrt,D; 

 The coefficient of variation Vrt calculated using Procedure 1 is henceforth denoted as  Vrt,1; 

  

 )1VVln(Q 2
D,rt

2
D     (4.7) 

 )1ln( 2
1,

2
1  rtVVQ    (4.8) 

 

The derivative of Q with respect to Vrt is: 
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Since it is larger or equal to zero for any Vrt, Q is a monotonically increasing function and the 

following conclusion may be drawn: 
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Differentiating expression (4.6) with respect to Q yields: 

   2
,d2

,d

Q5.0Qkexp
Q5.0Qkexp

1


 


 

    00)(5.0exp
5.0exp

,
2

,

2
, 




 QkQQQk
dQ

QQkd
dd

d
 

 

Since it is larger or equal to zero for all Q, the function is also monotonically increasing, then 
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 (4.11) 

 

Combining (4.10) and (4.11), it can be concluded that if it can be proven that 1,, rtDrt VV   then the 

values of γM obtained with P1 would be a safe-sided estimate of the partial safety factor. 

In order to compare Vrt,D and Vrt,1, a resistance function needs to be assumed. Considering the 

formulation of EN 1993 [2] for the flexural buckling of columns leads to: 

 AfffgXg yyfyrtirt )()()(    (4.12) 

Differentiating the resistance function with respect to the yield stress fy, gives: 
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The coefficient of variation Vrt is evaluated by: 
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Dividing (3.13a) by (3.13b) yields: 
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The derivative of χ with respect to fy is found: 
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It can be seen that it is lower than zero for any value of the yield stress, because it is a decreasing 

function.  

0
)(

y
y

y f
df

fd
 

The numerator and the denominator of the ratio C from expression (4.15) are plotted on Figure 4.3. In 

order to be able to analyse the value of C, these quantities have to be measured separately, since 

different values of the yield stress enter the equation: the specimen i value of fy,, fy,i, is present in the 

numerator, while the mean value of fy, fy,m, is present in the denominator. 
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Figure 4.3 - Analysis of denominator (yellow curve) and numerator (blue curve) of Ratio C 

 

A fully analytical proof of the conservatism of ratio C is not possible, since different values of the 

yield stress have to be assumed – i.e. fy,m≠fy,i. However, it can be proven that only an unrealistic 

distribution of the yield stress will lead to C higher than unity. Firstly, let us notice that the ratio C is 

smaller than unity whenever fy,i=fym, or fy,i>fym. However, when the mean value of the yield stress is 

higher than the one for a certain specimen, this does not necessarily occur: when fy,i<fym, this leads to a 

lower value of the normalized slenderness and consequently a higher χ for this specimen. In such case 

it should be checked if the ratio remains lower than unity. Nevertheless, by observing Figure 4.3, it 

can be seen that this is unlikely to occur and only a distribution with an unrealistic high scatter of the 

yield strength would lead to such a situation. For example, if an extreme case is considered when the 

minimum value of fyi=fynom, since the absolute minimum of the yield stress is nominal (guaranteed 

value), then both terms of the ratio C become equal: 
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By going through all slenderness ranges of )( ,iyf , one can obtain )( ,myf  by combining equations 

(4.16) and (4.17) and consequently can extract the value of fy,m that leads to such normalized 

slenderness. This was carried out considering all imperfection factors α from EC3-1-1. The minimum 
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difference between fy,i and fy,m was observed for 7.0)( , iyf  and 0.941)( , myf , buckling curve 

a0. This leads to fy,m= 424.52 MPa when fy,i=235 MPa (guaranteed value). Because the yield stress 

follows a log-normal distribution, the consideration of such parameters leads to a coefficient of 

variation of CoV=14.6% which is unlikely to occur. The CoV. value is determined as follows: 

1) Fistly, fy,i = 235 MPa is assumed as the value for which the probability of finding a lower fy,i 

approaches zero. With this, the mean and standard deviation of the correspondent normal 

distribution can be found: 
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 (4.17) 

where the value of the x=-4 such that the CDF    0 x  can be retrieved from standard 

normal distribution tables. 

2) Secondly, the following set of equations to transform a lognormal distribution 

 fyymfLogN ;  in a normal distribution  ;N  is used: 
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f  (4.18) 

3) Finally, considering fy,i=235 MPa, and replacing Eq. (4.17) in Eq (4.18), the 

ymfy fCoV   can be found. 

 

4.4 PROCEDURE 2 (P2) 

This procedure also constitutes a simplification of Annex D that can be considered as an extension of 

Procedure 1 as it now considers explicitly the variability of the geometry (see Figure 4.4). It is based 

on expression (3.9). It considers both variability of material and cross-section, so that the coefficient 

of variation Vrt is now calculated as: 

 

 222
csfyrt VVV     (4.19) 
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Steel profiles are available in multiple cross sectional shapes ranging from tubular profiles or I and H 

cross sections to arbitrary cross section shapes. The geometry of a generic cross section is defined by 

the shape and pairs of values for thickness and width (ti, bi). Although the statistical characterization 

of the variability of the cross section geometry must be done for each individual family of profiles, the 

buckling resistance formulas are written as a function of cross sectional properties (area, elastic or 

plastic moduli, moments of inertia). Consequently, it is possible to consider either the basic 

dimensions or directly the relevant geometrical properties as the random variables. The latter option is 

certainly better from a practical point of view. In both cases, the coefficient of variation Vcs may be 

written in a more general way as: 

        



k

j
xcs VV

1

22

                                               (4.20) 

 

Figure 4.4 - Procedure 2 
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4.5 SUMMARY 

All procedures are summarized in Table 4.2 to Table 4.5: 

 

Table 4.2 - Comparison of different procedures 

Method Regression line )ln( ii     2s   
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Table 4.3 Comparison of different procedures, continued 

Method V  2
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Table 4.4 - Comparison of different procedures, continued 

Method Q  rtQ  Q 

Annex D 
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Table 4.5 - Comparison of different procedures, continued 

Method nom,tr  dr  *
M  

Annex D 

)X(g nomrt  

 


























nQ5.0Qkexp)X(bg

30nQ5.0
Q

Q
k

Q

Q
kexp)X(bg

2
,dmrt

2
2

n,d

2
rt

,dmrt


 
d

nom,t

r

r
 

P0 
 

























nQ5.0Qkexp)X(gR

30nQ5.0
Q

Q
k

Q

Q
kexp)X(gR

2
,dnomrtm

2
2

n,d

2
rt

,dnomrtm
  

i,mRdi,M  

)V04.31(f

f

r

r

fym,y

nom,y

d

nom,t



 

P1, P2  


























nQ5.0Qkexp)X(bg

30nQ5.0
Q

Q
k

Q

Q
kexp)X(bg

2
,dmrt

2
2

n,d

2
rt

,dmrt


 
d

nom,t

r

r
 

 

  





European Erasmus Mundus Master 

Sustainable  Constructions  under  natural  hazards  and 

catastrophic events 

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC 

 

 

Trayana Tankova                                                                                                                                   45  
 
 

5 NUMERICAL VALIDATION OF POSSIBLE ALTERNATIVES 

5.1 INTRODUCTION 

In this chapter, the various procedures are assessed in the context of the flexural buckling resistance of 

steel columns. Because the buckling resistance of steel members presents distinctive behaviours for 

the various slenderness ranges, all comparisons are carried out for the slenderness interval [0.2 – 2.5].  

 

The following methodology is adopted to implement the comparative assessment: 

(i) assumed statistical distributions for the basic input variables are adopted, which are 

plausible representations of the reality; 

(ii) the coefficient of variation of the design model Vδ is assumed and varied from 0% to 

10%; 

(iii) in order to assess the compatibility of the test population, it is split into several sub-

sets according to slenderness intervals; 

(iv) the “resistance function” formulation for flexural bucking of columns, section 6.3.1 of 

EC3-1-1[2] is considered; 

(v) a large number of experiments are available (at least 100). 

 

In this chapter the following basic input variables are used: 

 Yield strength – fy; 

 Cross-section area – A; 

 Second moment of area – I; 

 Modulus of elasticity – E; 

 

The following cases are analysed and compared: 

 Procedure 1 – fy (regarding the basic input variables, only fy is considered as a random 

variable); 

 Procedure 2 – fy + A (in accordance with the discussion in section 3.4, besides fy, only 

the area is considered as a random variable since for flexural buckling of columns it is a 

primary variable); 

 Procedure 2 – fy+A+I (also I (implicit variable within reduction factor ) is considered 

as a random variable); 
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 Procedure 2 – fy+A+I+E (also I and E (implicit variables within reduction factor ) are 

considered as a random variables); 

 

The above notation is henceforth used to distinguish the various cases. 

 

The results of the application of the simplified procedures P1 and P2 are compared with the Annex D 

results in two ways: 

- comparison with Annex D results assuming the same random variables: this 

comparison is aimed at establishing the conservative nature of the simplification 

of using expression (3.27a) instead of (3.27b). 

- comparison with Annex D results using all the relevant basic input variables as 

random variables: this comparison is aimed at establishing the level of safety of 

the simplified procedures. 

5.2 GENERATION OF SAMPLES 

5.2.1 YIELD STRENGTH 

The population of the yield stress can be represented by a lognormal distribution [10].  

Three fictitious samples are generated. They are aimed at studying the influence of the scatter of yield 

strength on the resistance function. Therefore, all samples have nominal yield strength of 235MPa, the 

same mean value of 297.3 MPa, but different standard deviations. The assumptions are summarized in 

Table 5.1. 

In order to simulate a lognormal distribution, the following transformation was again performed: 
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Table 5.1- Assumed descriptors of the yield strength distributions 

 

fym σfy λ ξ

MPa MPa - -

X1 (n=100) 297.3 25 5.691219 0.083942
X2 (n=100) 297.3 17.1 5.69309 0.05747
X3 (n=100) 297.3 9 5.694284 0.030266

Steel
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Each sample consists of 100 specimens. Figure 5.1 to Figure 5.3 show the generated values of fy in 

the form of histograms.  

 

 

Figure 5.1 - Histogram X1(S235), fym=297.3MPa, σfy=25MPa 

 

Figure 5.2 - Histogram X2(S235), fym=297.3MPa, σfy=17.1MPa 
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Figure 5.3 - Histogram X3(S235) fym=297.3MPa, σfy=9MPa 

 

5.2.2 GEOMETRICAL PROPERTIES 

Hypothetical samples are simulated for the cross-sectional area and moment of inertia. The 

distributions are normal and the mean and standard deviation are assumed to follow expressions (5.2) 

[13].  Each distribution consists of 100 specimens. The cross section used in this example is an IPE 

200. 

  






xx

nomx X




04.0;01.0

99.0
  (5.2) 

Table 5.2 summarizes the assumptions. 

Table 5.2 - Assumed descriptors of cross-section properties distributions 

 

Xnom Xm σX

mm2(mm4) mm2(mm4) mm2(mm4)

A (n=100) 2848 2819.52 112.7808
I (n=100) 1424000 1409760 56390.4

Param.
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Figure 3.1 - Normal distribution of Area, n=100 

 

Figure 3.2 - Normal distribution of moment of inertia, n=100 

 

5.2.3 MODULUS OF ELASTICITY 

In order to study the influence of the modulus of elasticity, a sample is generated with 100 specimens. 

The distribution is assumed as normal Gaussian with c.o.v. of 5% [7]. 

 

Table 5.3 - Assumed descriptors of modulus of elasticity distribution 

 

Xnom Xm σX

MPa MPa MPa

E (n=100) 210000 210000 10500

Param.
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Figure 3. 3 - Normal distribution of modulus of elasticity 

 

5.3 RESULTS  

5.3.1 METHODOLOGY 

In this section the result of the numerical assessment of the simplified procedures is presented. The 

assessment is performed on the basis of the previously generated distributions. For all cases the 

sample size is 100 specimens so that the partial safety factor γM can be obtained from expression 

(3.36): 

  2
,
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5.0exp)(

)(

QQkXbg

Xg
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

  (5.3) 

As already mentioned in chapter 4, )(),(, nomrtmrt XgXgb are the same regardless of the method 

used. Therefore, the following term can be isolated and used for comparison of the resulting partial 

safety factors: 

  2
, 5.0exp

1

QQkd  

 (5.4) 

 

Using expression (3.27b) coefficients of variation Vrt are calculated for each data point i, yet 

simplified procedures propose a single value for the sample. 

Finally, the safety factor given by each approach is determined as follows: 

(i) When procedures P1 and P2 are used, a global value of M from expression (5.3) is 

obtained for the whole sample;  
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(ii) When Annex D is used with Eq. (3.27b), different values of M from expression (5.3)  

are obtained for each specimen due to the variation of the basic input variables. As a 

result, in order to get a comparable result from expression (5.3)  for both alternatives, 

the mean value of the single (specimen) results from expression (5.3) is determined.  

In the subsequent sub-sections the ratio (5.4) is used to compare different values of the partial 

safety factor. 

 

5.3.2 NUMERICAL ASSESSMENT OF P1  

 

In this sub-section, the behavior of P1 in case of flexural column buckling is studied.  

In order to compare P1 with the procedure of Annex D when all basic input variables are taken into 

account, it is assumed: 

- Distribution of the yield strength fy  – X2(S235), presented in sub-section 5.2.1; 

- Distributions of the area A and moment of inertia I – presented in sub-section 5.2.2; 

- Distribution of the modulus of elasticity E – presented in sub-section 5.2.3; 

 

The coefficient of variation of the model is assumed – Vδ=0.05; The results are plotted in Figure 5.4. 

The Annex D procedure is presented in terms of each specimen i and the corresponding mean value 

(in orange). Additionally, results are given in case fy is assumed as the only random variable in the  

Annex D procedure (in red). It can be observed that P1 presents some unsafe results when compared 

to the “full” Annex D. On the contrary, when compared to Annex D (fy), it is always safe. 
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Figure 5.4 - Results for distribution X2(S235), Vδ =0.05 

A further comparison is performed on the basis of different values of the variability of the model, Vδ. 

The results are plotted in terms of percentage difference between partial safety factors evaluated using 

P1 and the “full” Annex D (when basic input variables are fy+A+I+E). The “unsafe” trend is 

maintained for different Vδ as shown in Figure 5.5.  

 

Figure 5.5 - P1(fy) for various Vδ  

 

It should be mentioned that the percentage difference strongly depends on the distributions that are 

being used and Figure 5.5 cannot be taken as a reference case for flexural buckling of columns. It 

aims to be illustrative for the problem.  
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The influence of the standard deviation of the yield strength is additionally analysed. The samples 

presented in sub-section 5.2.1 are used. Procedure P1 is compared with the procedure of Annex D, 

when partial derivatives are evaluated only for the yield strength fy, so that the impact of the other 

basic variables is omitted. The comparison is performed on the basis of expression (5.4). The 

coefficient of variation Vδ is assumed equal to 0.05 for all three cases. 

It can be noticed that the variation of the yield stress has more significant influence within the low to 

intermediate slenderness range. It is also remarked that P1 would always give higher results when 

compared to Annex D if the yield strength were indeed the only variable of the problem, thus 

confirming the analytical derivation proposed in sub-section 4.3.2.  

 

 

Figure 5.6 - Results for distribution X1(S235), Vδ =0.05 
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Figure 5.7 - Results for distribution X2(S235), Vδ =0.05 

 

Figure 5.8 - Results for distribution X3(S235), Vδ =0.05 
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5.3.3 NUMERICAL ASSESSMENT OF P2 

For the numerical assessment of P2 in case of the flexural buckling of columns the influence of the 

consideration of several random variables related to geometry or related to properties are considered, 

as already described in section 5.1. Specifically, the following basic variables are included: cross-

section area, moment of inertia and Young’s modulus. The following cases are analysed: 

 P2 – fy + A versus Annex D with variability of fy+A; (Figure 5.9) 

 P2 – fy+A+I versus Annex D with variability of fy+A+I; (Figure 5.10) 

 P2 – fy+A+I+E versus Annex D with variability of fy+A+I+E; (Figure 5.11) 

Assumptions: 

- Distribution of the yield strength fy  – X2(S235), presented in sub-section 5.2.1; 

- Distributions of the area A and second moment of area I – presented in sub-section 

5.2.2; 

- Distribution of the modulus of elasticity E – presented in sub-section 5.2.3; 

- All alternatives are compared with the corresponding assumption for Annex D for 

Vδ=0.05; 

 

Firstly, the alternatives are compared to the full Annex D procedure using expression (5.4) similarly 

to the previous section, in order to see the deviations between the different assumptions. Unlike P1, 

the presence of geometrical properties and Young’s modulus leads to results that are always on the 

safe-side. 

However, it is observed that as more variables are included, the differences with Annex D become 

higher. This issue is associated to the fact that simplified procedures are only adding the variability of 

each parameter. On the contrary, the Annex D procedure using partial derivatives takes into account 

the variability of each parameter as they appear in the “resistance function”.  
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Figure 5.9 - P2(fy+A) vs Annex D, absolute values   

 

 

Figure 5.10 - P2(fy+A+I) vs Annex D, absolute values 
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Figure 5.11 - P2(fy+A+I+E) vs Annex D, absolute values 

 

Since no experimental tests were performed, the influence of the coefficient of variation Vδ is worth 

studying as in the previous section. The difference is given in percentage with respect to the Annex D 

using partial derivatives and including the variability of all basic variables assumed in this work 

(fy+A+I+E) for various coefficients of variation Vδ, since, in reality, it is impossible to differentiate 

between the random variables as previously mentioned.  

 

 

Figure 5.12 - P2(fy+A) for various Vδ  
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Figure 5.13 - P2(fy+A+I) for various Vδ 

 

The trend of increased error with increased number of basic input variables considered in P2 remains. 

It can be seen as a positive trend, in a way that the more variables are used the more uniform the 

difference becomes. It can be favourable, in case adjusting function or correction coefficient are 

introduced in the simplified procedure, as proposed in [14].    

 

 

Figure 5.14 - P2(fy+A+I+E) for various Vδ 
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6 NUMERICAL EXAMPLE 

6.1 DEFINITION AND PURPOSE 

In this chapter a numerical example is presented. The example aims at further clarifying the 

previously discussed issues in terms of partial safety factors γM. In addition, the example intends to 

compare the impact of different basic variables on the resistance function using the method of Annex 

D.  

The example is based on flexural buckling formulae of EN 1993-1-1. Here, a profile IPE 200 is 

chosen for the column cross-section.  The steel grade is S355. The specimens are tested in pure 

compression for nominal values of the normalized slenderness  =0.3, 0.6, 1.0, 1.4, 1.8 and 2.2. For 

each specimen, the following parameters are measured (i.e. randomly generated for this fictitious “test 

campaign”): 

 Yield strength – fy; 

 Modulus of elasticity – E; 

 Cross-section (CS); 

- Cross-section width – b; 

- Cross-section height – h; 

- Flange thickness – tf; 

- Web thickness – tw; 

 Residual stresses - RS;  

 Geometrical imperfections – GI (member imperfection); 

 

The buckling strength of the columns is obtained using numerical finite element simulations. Each 

case is modelled using the respective geometrical and material properties. 

Moreover, here variability of residual stresses and geometrical imperfections is also considered, in 

order to be able to achieve understanding about their impact. However, it is difficult to treat the 

imperfections since there is not sufficient information about their distribution and additional difficulty 

is coming from the fact that they are not considered explicitly in the design formulation of EN 1993-

1-1 [2], being incorporated in the imperfection factor α. 

Additionally, the influence of modelling with nominal properties of the basic input variables is also 

studied. This matter is of particular interest, since the number of simulations can be significantly 

reduced, if it can be proven that it is acceptable to adopt the approach.  

The column length L and the imperfection factor α are considered constant. Therefore, the basic input 

variables are – yield strength fy, Young’s modulus E, cross-section width b, cross-section height h, 
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flange thickness – tf;   and web thickness tw. Estimates for their mean values and standard deviations 

are given in section 6.1.2. 

6.1.1 CASES 

The cases which are modelled are presented. As it was already explained, for each case the number of 

normalized slenderness ratios is six and for each slenderness100 specimens are considered.  

Table 6.1 Cases 

 

 Firstly, 46 cases with nominal parameters are run, for different member lengths. They are 

used as a reference case and also when the concept of modelling with nominal parameters is 

discussed; 

 Secondly, each variable is modelled separately and the remaining parameters are left nominal 

in order to study the influence of each parameter; 

 Subsequently, combinations of variables are considered, in order to obtain the influence of 

parameters when they are grouped; 

 Finally, all variables are combined together; 

6.1.2 SAMPLES 

In order to simulate experiments, samples of the random variables were generated. For that, 

assumptions about the parameters of the distribution were made. Additionally, these samples should 

correspond to more or less plausibly to reality, because the results are very much influenced of the 

input.  

Another difficulty is arising from the fact that there is not sufficient data for some of the basic 

variables. For instance, the distribution of the yield stress is very well known, due to the fact that it is 

standardized and therefore it needs to be checked if it corresponds to the reality. It is also known that 

Basic variables considered
Variables N slenderness Subtotal

Nominal 1 46 46

Variability f y 100 6 600

Variability CS 100 6 600
Variability E 100 6 600

Variability  f y+CS 100 6 600

Variability  f y+E 100 6 600

Variability  f y+RS(f y ) 100 6 600

Variability f y+CS+E 100 6 600
Variability ( GI+RS ) 100 6 600
Variability  GI, RS=const 100 6 600
Variability  GI=const, RS 100 6 600

Variability f y+CS+E+GI+RS 100 6 600
Total: 6646
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it can be described by a lognormal distribution. An interesting fact about the distribution of the yield 

stress is that the nominal value is a guaranteed value; hence the scatter is always higher than the 

nominal. This is very advantageous feature which is further analysed. 

  

Figure 6.1Histogram  fy 

 

Figure 6.2 Histogram E 

 
 

The population of the geometrical properties is known to follow the Gaussian distribution. However, 

here the nominal properties are not guaranteed values and it is observed that the mean value is close to 

the nominal value, which in turn means that there is part of the distribution which exhibits 

unfavourable quantities from engineering stand point.  
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Figure 6.3 Histogram  b 

 

Figure 6.4 Histogram  h 

 
 

 

Figure 6.5 Histogram  tf 

 

Figure 6.6 Histogram  tw 

 
 

The population of the modulus of elasticity is also known to follow the Gaussian distribution. 

However, there is not much data on measurements of the modulus of elasticity, due to the fact that it 
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is very difficult to measure the modulus; moreover, even if the same measurement is considered, two 

different people may obtain with very different results. In this example recommendations from [15] 

are adopted. 

Another property which is difficult to find are the residual stresses. Apparently, their measurement is 

very expensive and therefore, there are not many results. Distribution is assumed from [16]. 

Moreover, this distribution has a mean value which is much lower than the nominal, which is also  

favourable. 

Finally, for the population of the member imperfection, it is also very difficult to find information, 

even though it is being standardized. For this example, the statistical parameters given in [16] are 

adopted. 

Figure 6.7 Histogram  e0/L 

 

Figure 6.8 Histogram residual stresses

 

 

6.2 NUMERICAL MODELLING [17] 

In order to obtain “experimental” results [17], large number of finite element simulations was carried 

out. Using numerical models for experimental results is reported to be useful way of obtaining results 

[5], because the output can be monitored, and in case of real experiments sometimes it is not possible 

to capture the real behaviour.  

In this experimental programme, finite element software product Abaqus 6.12[18] was used. Each 

column is modelled with four-node linear shell elements (S4) with six degrees of freedom.  
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Advanced analyses were performed using geometrical and material nonlinearities with imperfections, 

also known as GMNIA. This type of analysis allows to capture the second order effects which are 

essential for the stability problem. 

Material nonlinearity is incorporated in the model by using elastic-plastic constitutive law based on 

Von-Misses yield criterion.  

 

Figure 6.9 Finite element model 

Geometrical imperfection were modelled using initial sinusoidal imperfection of amplitude 

e0=L/1000. The imperfection is introduced in the weak axis of the cross-section. 

The load is applied using load stepping routine, in which the increment size is chosen in order to meet 

the accuracy and convergence criteria. The equilibrium equations are solved for each increment using 

Newton-Raphson iteration technique.  

The adopted mesh is 16 sub-divisions in the web and flanges and 100 divisions along the members 

axis. 

The boundary conditions are implemented as end fork conditions in the shell model. The following 

restraints are used - vertical (δy) and transverse (δz) displacements and rotation about xx axis (ϕx) are 

prevented at supports. In addition, longitudinal displacement (δx) is prevented in one end. End cross-

sections are modelled to remain straight. 
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6.3 RESULTS AND DISCUSSION 

6.3.1 INTRODUCTION 

In this section, the results are presented and further discussed based on comparisons between different 

approaches and considering different variables. The assessment is performed based on the partial 

safety factor γM. Different types of comparisons are used: 

 Firstly, the influence of each basic variable: all basic variables are modelled separately, and 

the other variables are kept with nominal characteristics, in order to compare the impact of 

each basic variable on the resistance function; 

 Secondly, the combinations of random variables are considered; in reality they are always 

acting together and their combined impact is being analysed; 

 Subsequently, the influence of establishing a model using only nominal properties for basic 

variables is considered. Their variability is further accounted using the procedure of Annex D; 

 Finally, the simplified procedures are applied in order to illustrate previously defined trends 

in section 5.  

The column buckling formulation of EN 1993-1-1 [2] is adopted for resistance function. Based on that 

resistance function, partial safety factors are calculated using the procedure proposed in Annex D of 

EN 1990. The procedure is applied as shown in Figure 3.5. The theoretical quantities of the resistance 

function rt,i are calculated and further analysed with the experimental ones re,i = Nb. The errors terms δi 

are then obtained, leading to the coefficient of variation Vδ having three different quantities for each 

slenderness respectively. Furthermore, the sensitivity of the resistance function to the basic input 

variables is studied. Since the resistance function is a complex function, then the computation of the 

coefficient of variation Vrt involves partial derivatives of the resistance function at each variable. The 

partial derivatives are computed numerically using expression 6.1 and very small values of “Xi” for 

each test specimen separately, leading to a scatter of γM,i for each specimen.  

 
i

jitjiit

i

t

X

XXXrXXXXr

X

r







 ),....,...,(),....,...,( 11

 (6.1) 

Finally, the mean value of γM for each slenderness range is obtained and further compared in the cases 

listed above. 

In this section, if it is not otherwise specified, the method which is used to obtain the partial safety 

factor is the procedure of Annex D using the partial derivatives. 

The simplified procedures are applied as proposed in section 4.  

6.3.2 INFLUENCE OF EACH BASIC VARIABLE 

The influence of each basic variable is considered as each of them is modelled separately as a random 

variable and the remaining properties are kept with nominal characteristics. Furthermore, the 

procedure of Annex D is applied using the partial derivatives only at the respective variable and 



 

European Erasmus Mundus Master

Sustainable Constructions under natural hazards and 

catastrophic events

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC

 

66                                                                                                                                  Trayana Tankova 
 

 

partial safety factors γM,i are calculated for each column. Finally, the mean value of each slenderness 

case is obtained and further plotted in Figure 6.10 . 

Observing Figure 6.10, the favourable effect of the yield stress distribution is clear. Through all 

slenderness ranges, the partial safety factors are always lower than unity and more or less 

homogeneous.  

On the contrary, if the modulus of elasticity is considered as only variable, it is almost in every case 

presenting with partial safety factors which are higher than one. This issue can be addressed to the 

fact that the mean value of the distribution is considered equal to the nominal one, and therefore there 

is range in which the modulus has lower quantity than the nominal. Hence the partial safety factor 

should “compensate” for those lower values. It is can be noticed that within low-to-intermediate 

slenderness range, the partial safety factors are lower since in that range it is has minor influence on 

the stability problem (see  =0.3 and 0.6). However, in the medium-to-high slenderness range partial 

safety factors of 1.1 are observed. 

 

Figure 6.10 Mean value of partial safety factor for each variable 

 

Similarly to the modulus of elasticity, the geometrical properties have mean value around the nominal 

value and therefore the partial safety factors are accounting for that by resulting in higher values. 

Unlike the modulus of elasticity, the geometrical properties exhibit more or less the same partial 

safety factor through all slenderness cases, due to fact that they are entering the resistance function 

both through the area and the moment of inertia. As the area is more important in the low-to-

intermediate slenderness range, the inertia has more influence in the high slenderness range. 

When considering the imperfection, their influence is only accounted through the difference of 

experimental value when compared to the nominal value, because they are incorporated in the design 
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model of EN 1993-1-1 and they are not explicitly considered in the resistance function and therefore, 

it is not possible to obtain coefficient of variation Vrt when they are considered as a random variables. 

As the residual stresses have a mean value lower than the nominal, the favourable effect, indeed, is 

seen by partial safety factors lower than unity. The geometrical imperfection however is presenting 

partial safety factor higher than unity in the intermediate slenderness range, where it actually cannot 

be neglected. 

Further comparison of the imperfections is presented in Figure 6.11, where two additional cases are 

considered, namely: i) imperfections action together; ii) residual stresses changing according the 

change of the yield stress. Influence of modelling with residual stresses as a function of the nominal 

or the actual yield stress is found negligible. On the other hand, when both imperfection types are 

combined, for intermediate slenderness values, differences between both residual stresses and 

geometrical imperfection modelled separately, are found. 

 

Figure 6.11 Mean value of partial safety factor for each variable 

 

In reality, it is not possible to distinguish between basic variables. Since their nature is random, the 

basic variables act together and it is not possible to isolate them.  However, it was useful for better 

understanding to try to quantify the influence of each variable. 

 

6.3.3 COMBINATIONS OF BASIC VARIABLES 

The combinations of variables are chosen as each of them is modelled separately with the random 

variables considered and the remaining properties are kept with nominal characteristics, similarly to 

the previous section. Furthermore, the procedure of Annex D is applied using the partial derivatives 
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only at the respective variables and partial safety factors γM,i are calculated for each column. Finally, 

the mean value of each slenderness case is obtained and further plotted in Figure 6.12. 

The following combinations of variables are considered: 

 Yield stress and cross-section properties (fy+CS) – this combination it is aimed at evaluating 

the influence of the variability of the cross-section relatively to the yield stress. The partial 

derivatives of the geometrical properties are performed with respect to the area and moment 

of inertia; 

 Yield stress and modulus of elasticity (fy+E) – similarly to the previous combination, here the 

impact of the Young’s modulus relatively to the yield stress is evaluated; 

 Yield stress, cross-section properties and modulus of elasticity (fy+CS+E) – finally all the 

basic variables which are considered explicitly in the formulation of the EN 1993-1-1 are 

combined in order to obtain a realistic value of the partial safety factor; 

 Yield stress, cross-section properties and modulus of elasticity; geometrical imperfection and 

residual stresses (fy+CS+E+GI+RS) – this combination is compared with the previous in 

order to see the influence; 

Figure 6.12 summarizes the partial safety factors for the various slenderness ranges considered. In all 

cases the partial safety factors obtained considering the yield stress as the only variable is added.  

 

Figure 6.12 Combination of variables 

In the previous sections, it was already mentioned that the distribution of the yield stress possesses 

useful features. Here, it can be observed that it is not valid only when the yield stress is considered as 

only variable. When comparing the results for fy+E and fy+CS it is seen that in the low and 

intermediate slenderness range fy manages to cover for the variability of the area and modulus of 

elasticity. However, in the high slenderness this is not true anymore since the modulus of elasticity 

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.3 0.6 1 1.4 1.8 2.2

γ M

Slenderness, ̅λnom

fy fy+CS fy+E fy+CS+E fy+CS+E+RS+GI



European Erasmus Mundus Master 

Sustainable  Constructions  under  natural  hazards  and 

catastrophic events 

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC 

 

 

Trayana Tankova                                                                                                                                   69  
 
 

and the inertia of the cross-section become more influential due to the second order effects. The same 

trend is observed when all variables are combined. 

It can be also noticed that for  =1.4, 1.8 and 2.2, the partial safety factor should be higher than unity, 

which is not the case in the present version of EN 1993-1-1[2]. This result is explained by already 

mentioned importance of the modulus of elasticity and inertia in the high-slenderness range. In 

addition, in the calibration of the buckling curves [16], the scatter of the modulus of elasticity and 

moment of inertia was not considered which in turn leads to the observed differences. 

 

6.3.4 INFLUENCE OF MODELLING WITH NOMINAL PARAMETERS 

A useful feature is the possibility to model the element with nominal properties and further apply the 

procedure of Annex D with the variability of the basic variables, it would be very useful , since it 

would reduce significantly the number of finite element simulations. In such case, the partial 

derivatives of the resistance function are performed at the nominal value of each basic variable. 

Modelling with nominal properties would mean that the coefficient of variation Vδ, which is obtained 

from the differences between the numerical and theoretical results is the same regardless of the input 

variables. Moreover, it means that epistemic uncertainty is constant for the various slenderness cases, 

which in turn is not the reality. In Figure 6.13 it is noticed that the differences between the 

experimental and theoretical estimations for the reduction factor χ are not constant thorough the 

buckling curve, therefore the model uncertainty differs for every slenderness. 

In order to reduce the error between different slenderness ranges, for the vicinity of each slenderness 

case in this example, additional simulations are performed in order to obtain the coefficient of 

variation of the model Vδ, because if all are considered together the scatter would be higher and it 

would lead to a single γM factor. 
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Figure 6.13 Nominal experimental and nominal theoretical 

 

Several combinations are considered as it can be seen from Figure 6.14 to Figure 6.17, the application 

of the assumption that the models are built with nominal characteristics and the influence of the 

variability is further considered in the application on the procedure of Annex D, leads to safe results. 

However, the differences are not constant throughout the different slenderness case as it was 

expected. 

Figure 6.14 Fy vs (Fy)nom 

Table 6.2 fy vs (fy)nom 
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Figure 6.15 Fy+CS vs (Fy+CS)nom 

Table 6.3 fy+CS vs (fy+CS)nom 

 

Figure 6.16 Fy+E vs (Fy+E)nom 

Table 6.4 fy+E vs (fy+E)nom 
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Figure 6.17 Fy +CS+E vs (Fy+CS+E)nom 

Table 6.5 fy +CS+E vs 

(fy+CS+E)nom 

 

6.3.5 INFLUENCE OF GEOMETRICAL PARAMETERS 

In previous sections the partial derivatives for the cross-section properties were performed with 

respect to area and moment of inertia. In this section, the influence of performing the derivatives at 

each cross-section parameters or as more global – area and moment of inertia is considered. Figure 

6.18 summarizes the partial safety factors obtained both alternatives, moreover, it presents the same 

comparison based on models with nominal properties. Very small differences are observed and 

therefore, the assumption is considered as valid. 

 

Figure 6.18A+I vs. b+h+tf+tw 
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lead to high differences. Moreover, the difference remains more or less constant no matter if the 

variable is combined with the yield stress or not. 

 

Figure 6.19Influence of cross-section area and inertia 

Table 6.6 Influence of area 

 
Table 6.7 Influence of inertia 

 

 

Figure 6.20Influence of cross-section area and inertia 

 

Table 6.8 Influence of area 

 
Table 6.9Influence of inertia 
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The simplified procedures are applied in the context presented in previous sections.  
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1) P1 (fy) – as it was presented in section 4.3, it is based on expression (3.9) and only the 

variability of the yield stress is taken into account. As a result, from the fact that the mean 

and standard deviation of the yield strength are represented by single values, global partial 

safety coefficients γM are obtained for each slenderness range.Figure 6.21 and Table 6.10 

summarize the results obtained with this procedure. 

In addition, Figure 6.21 and Table 6.10 present results for the procedure in f) using the 

partial derivatives only for fy, it is “acting as if” the yield strength is the only variable. 

Nonetheless, the percent difference is computed with regard to (global) fy+CS+E. 

Observing Table 6.10, it can be pointed out that P1 provides results which are unsafe when 

compared to fy+CS+E.  

These results confirm the trends observed in section 5.3. Nevertheless, it should be noticed 

that the percentual difference might be different for the same Vδ since the distributions of 

the basic variables are different from the ones used in section 5.  

 

Figure 6.21 Comparison of partial safety factors 

Table 6.10 Difference P1(fy) 

 

2) P2 (fy+A) – as an extension of the assumptions above, here the geometrical properties are 

included are basic variables. P2 is assumed as presented in section 4.4. In this case, the 

random variables are the yield strength and the cross-section area. The mean value and 

standard deviation of the area are calculated using Eq. (3.23) and Eq. (3.24). Similarly to 

P1, single results for the partial safety coefficient γM are obtained. Figure 6.22 and Table 

6.11summarize the results obtained with this alternative; 

 

It is noticed for  =2.2, the procedure starts to become unsafe, unlike the observations in 

section 5, where the procedure was showing only safe-sided results. However, this “misfit” 

is explained by the fact that the distribution in this example has much lower coefficient of 

variation for the area ~2.3%, instead of 4% which were used in section 5.           
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Figure 6.22 Comparison of partial safety factors 

Table 6.11 Difference P2(fy+A) 

 

 

3)  P2 (fy+A+I) – same as 2, but with the additional consideration of the moment of inertia as 

a random variable. Correspondingly to P2 (fy+A), the mean value and standard deviation of 

the moment of inertia are calculated using Eq. (3.23) and Eq. (3.24). Here also single 

results for the partial safety coefficient γM are obtained. Figure 6.23 and Table 6.12 

summarize the results obtained with this alternative; 

Moreover, Figure 6.23 and Table 6.12 present results for the procedure in fy+CS using the 

partial derivatives in case that the yield strength, column cross-section dimensions are the 

basic variables and the variability of the Young’s modulus is neglected. However, the 

percent difference is evaluated with regard to fy+CS+E. 
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Figure 6.23 Comparison of partial safety factors 

Table 6.12Difference P2(fy+A+I) 

 

 

4) P2 (fy+A+I+E) – finally variability of yield stress, Young’s modulus and cross-sectional 
properties are grouped together using P2. Results are presented in Figure 6.24and Table 
6.13. 

 

Figure 6.24 Comparison of partial safety factors 

Table 6.13 Difference P2(fy+A+I+E) 

 

The example confirms the trends shown in section 5.3. However, it should be noted that it is not 

possible to directly compare results since the distributions used in sections 5.3 and 6 have different 

parameters – ratio between mean and nominal values, standard deviation.  Despite that fact, the trends 

drawn in section 5 for the simplified procedures are confirmed with the example in chapter 6. 
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7 BRIEF ANALYSIS OF THE STATISTICAL DEPENDENCY BETWEEN 

BASIC VARIABLES 

Throughout the previous chapters, there was always the same assumption which in fact is the 

assumption adopted in EN 1990, i.e., the basic variables are treated as statistically independent. 

However, it is not always the case. For example, the yield stress is dependent on the plate thickness; 

or the cross-section dimensions are dependent to each other due to the fact that the element mass is 

strictly monitored, the modulus of elasticity and the elastic strain, etc. 

It was already explained that it is very hard to obtain information about the distributions of the basic 

variables. Therefore, it is even more difficult to obtain the magnitude of the correlation between basic 

variables. However, it is worth to try to quantify the impact of the correlation, i.e. if it is safe-sided 

(within certain reasonable limits) to neglect it. 

In this chapter, the statistical dependence of the yield stress and thickness of the plate is treated. It is a 

negative correlation, i.e. when one parameter is increasing, the other is decreasing.  

7.1 CORRELATION BASED ON EXPERIMENTS 

In [19], a large number (689) of tests was performed on yield stress and geometrical properties. Based 

on that data, an attempt to estimate the correlation coefficient is performed. As the yield stress is 

dependent on the plate thickness, firstly the scatter of flange thickness and yield stress is considered. 

689 tests from [19] on S235 steel are considered for this analysis. The geometrical properties were 

measured on both H and I sections, namely IPE80, IPE120, IPE 140, IPE 140, IPE 160, IPE 180, IPE 

240, IPE 270, HEB 100, HEB 140, HEB 180. Although all flange thicknesses are smaller than 16mm, 

a certain trend can be seen when observing the scatter on Figure 7.1. 

 

Figure 7.1 Correlation between yield stress and flange thickness 
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The correlation coefficient is obtained based on expression (2.25), and the value of ρ = -0.611 is 

found. Figure 7.1 clearly shows the negative correlation between the variables, yet it is confirmed by 

the calculation. 

Additionally, the correlation between the cross-section area and yield stress is studied and correlation 

coefficient is found equal to -0.681, similarly to the one above. The scatter is shown in Figure 7.2. 

 

Figure 7.2 Correlation between yield stress and cross-section area 
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The remaining part of the procedure remains unchanged.  

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

f y
[M

P
a]

A, [cm2]



European Erasmus Mundus Master 

Sustainable  Constructions  under  natural  hazards  and 

catastrophic events 

520121‐1‐2011‐1‐CZ‐ERA MUNDUS‐EMMC 

 

 

Trayana Tankova                                                                                                                                   79  
 
 

In order to consider the correlation in terms of difference between partial safety factors, the samples in 

section 5.2 are used and the comparison is performed using the same assumptions as in section 5.3.1 

as here a correlation between area and yield stress is assumed. Moreover, the correlation coefficient is 

assumed equal to -0.681 as calculated for the experimental results in the previous section. 

Additionally, assumption for the coefficient of variation Vδ was also made. 

Figure 7.3  summarizes the results. It was found that higher difference between considering the 

correlation or not is found for Vδ=0. The maximum observed difference is 3.6%, meaning that 

including the covariance would result in 3.6% lower partial safety factors. Therefore, neglecting the 

correlation is actually safe-sided and the simplification does not lead to high differences. 

 

Figure 7.3 Correlation coefficient -0.681 
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Figure 7.4 Correlation coefficient -1.0 

In this section, an attempt to take into account statistical dependence of the basic input variables was 

presented. The assumption of correlation between yield stress and geometrical properties was 

adopted. That correlation is negative and it leads to safe-sided result, if it is neglected. However, these 
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8 CONCLUSIONS AND FUTURE RESEARCH 

8.1 CONCLUSIONS 

This study summarized different possibilities for the safety assessment of design rules focusing on the 

buckling resistance of steel members. The various simplifications were explained and assessed based 

on assumed distributions for the basic variables. Different basic variables were considered, including: 

i) material properties; ii) geometrical properties. Moreover, the influence of each basic variable was 

studied in the numerical example in section 6. 

It was shown that simplified procedures which include the variability of the yield strength as the only 

basic variable may be unsafe for certain slenderness ranges when compared to the Annex D procedure 

considering all relevant basic input variables.  

When geometrical properties were included, P2 always showed results on the safe side. However, a 

clear trend of increasing the error between P2 and the “full” Annex D with increased number of 

variables considered was noted in both the numerical validation of chapter 5 and the example 

presented in chapter 6. This results from the simplified procedure simply adding the variability of the 

input variables, while the Annex D procedure using the partial derivatives for Vrt, accounts for the 

function and each variable gives its contribution according to its contribution in the resistance 

function, at the respective slenderness value. In other words, the simplified procedures inevitably 

calculate a “too large” value of Vrt.  

Additionally, it is noticed that the difference between the “full Annex D” and the simplified procedure 

for each slenderness range become more homogeneous with an increased number of basic random 

variables. This tendency can be seen as very useful in case of adopting adjustment function or factors 

for the simplified procedures, as proposed in [14]. 

Moreover, the influence of each variable was discussed based on the numerical example in section 6. 

It was shown that the distribution of the yield stress has favourable effect on the partial safety factor 

γM i.e. it reduces its value. On the contrary, the distributions of the geometrical properties and 

Young’s modulus lead to higher partial safety factors. It was observed that when the basic variables 

are combined, the yield stress may compensate for the distributions of geometry and modulus of 

elasticity. However, in the high slenderness range, the favourable effect was not enough due to the 

higher importance of the stiffness parameters. 

A try to assess the partial safety factors based on models with nominal properties was also presented. 

It was shown that the differences are small, nevertheless not constant. Keeping in mind those 

observations, it is not possible to conclude that models with nominal properties can be used for safety 

assessment.  

Additionally, the scatter of member imperfection and residual stresses was also included in the 

numerical models. Imperfections, being basic variables incorporated in the design procedure, are 
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difficult to assess explicitly, therefore their impact was only accounted in the coefficient of variation 

of the model Vδ.  

Although all the numerical comparisons were performed only on the basis of the flexural buckling of 

columns, the conclusions should be equally valid to other stability phenomena (LTB of beams, TB 

and LTB of columns and the buckling resistance of beam-columns). These other stability problems 

will be addressed in the near future to confirm this. 

In EN 1990 and in the simplified procedures, the same assumption was adopted – the basic variables 

are statistically independent. In chapter 7, an attempt to consider correlation between basic variables 

was proposed. The correlation between yield stress and plate thickness was only accounted for. In 

order to evaluate reasonable correlation coefficient, statistical data from real experiments was used. It 

was shown that if the statistical dependence is neglected, the differences are not very high and the 

result is safe sided, for the case considered. However, different results may be observed when other 

basic variables are used. Therefore, the topic should be further explored. 

8.2 FUTURE RESEARCH 

The scope of this study has certain limitations and therefore it should be further extended in the 

following directions: 

 Here, the safety assessment was performed based only on the flexural buckling of columns, as 

already mentioned it is expected that the conclusions made would be equally valid for other 

stability modes, however it is worth to extend the study for LTB of beams, TB and LTB of 

columns and the buckling resistance of beam-columns in order to confirm the same trend. 

Furthermore, the concept should be tested for other failure modes such as ductile and brittle 

failure modes. 

 In chapter 6, it was discussed that many parameters lack sufficient statistical characterization. 

Consequently, it would be very useful, if such data can be collected. In order to achieve that, a 

European database is developed under SAFEBRICTILE project. It can provide the needed 

statistical characterization and allow to give guidance to the designers and researchers on 

which basic variables should be considered; 

 The safety assessment procedure should be developed, in order to provide clear guidance to 

designers and researchers on how to assess new design rules. In addition, a guidance on which 

basic variables are relevant for the different failure modes is also required;  

 Finally, and attempt to include statistical dependence was presented, however it was only 

focused on correlation between plate thickness and yield stress. As already mentioned, it 

would be useful to extend the study to correlation between other basic variables and check if 

it is safe-sided to assume statistical independence of the relevant basic variables. 
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