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1. DYNAMIC RESPONSE ANALYSIS

- The equation of motion represents N differential equations

mi + cu + ku = p(7) N equations

- Considering modal analysis, the previous equations can be reduced if the
the nodal displacements are approximated by a linear combination of the
first J natural modes (usually J much less then N, number of DOF)

a(1)0 Y 4,4, (1) = ®a() 4,(1)]
i *=[¢ ¢ - o] q(f)=<%._(_[)>
Mq+Cq+Kq =P() J equations (J<<N) 4, (t)

J

(Modal analysis can only be used if the system does not respond into the non-linear range...)
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Dynamic response analysis

For systems that behave in a linear elastic fashion...

- If Nissmall — itis appropriate to solve numerically the equations

mu + cu + ku =p(¢)

- If Nislarge — it may be advantageous to use modal analysis

Mq+Cq+Kq =P(t) M and K are diagonal matrices

- For systems with classical damping C is a diagonal matrix —
J uncoupled differential equations (see resolution of SDOF systems)

M,q,(0)+C, q,()+K,q,()=F) n=1,J

- For systems with nonclassical damping C is not diagonal and
the J equations are coupled — use numerical methods to

solve the equations
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Dynamic response analysis
- The direct solution (using numerical methods) of the NxN system of equations
mu + cu + ku =p(¢)
is adopted in the following situations:

- For systems with few degrees of freedom

- For systems and excitations where most of the modes
contribute significantly to the response

- For systems that respond into the non-linear range

- Numerical methods can also be used within the modal analysis for system with
nonclassical damping
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2. TIME-STEPPING PROCEDURE

- Equations of motion for linear MDOF system excited by force vector p(s) or
earthquake-induced ground motion , (¢)

mii +cu+ka=p() or —mui,(s)
initial conditions u(0)=u, and wu(0)=nu,

time scale is divided into a series of time steps, usually of constant duration
At=t,, 1,

P, Ep(ti) u; Eu(ti) u, Eﬁ(ti) u, Eﬁ(ti)

mu; +cu, +ku, =p, = mu,_+cu ,+ku  =p,,

unknown vectors u,, u, u,

Explicit methods - equations of motion are used at time instant /
Implicit methods - equations of motion are used at time instant /+1
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Time-stepping procedure

- Modal equations for linear MDOF system excited by force vector p(¢)

u()1 30,4, (1) =@q(0)
Mq+Cq+Kq =P()
M=0'm® C=0'c® K=D'kd® P()=D'p(f)

Mql+qu +qu :Pi — Mqi+1+cqi+1+in+l :Pi+1

unknown vectors Qi 41 G
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3. CENTRAL DIFFERENCE METHOD

explicit integration method

dynamic equilibrium condition

for direct solution

for modal analysis

n

X,—Ww  f,— P M C K—m,ck
xn_)qi ﬁq_)Pl MC,K—)M,C,K

J,

Kt ~ M M i +Cx, +Kx = f
DAL —
_ 2 + _
X, — 2xn +Xx, 4 ]\4|:x’“rl Ax; X1 :| + C{%} + Kxn
t t
At
1 1 2 1 1
= —M+—C K-S Mx | —M-—C
Knit {Atz 2At } {f” ( At? jx” (Atz 2At )x’“}
< Y4 G 7 C /
Y Y Y
k b a
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Central difference method

-1
for diagonal M and C, finding an inverse of [LZMjL 1 C}
is trivial (uncoupled equations) At 2At

time step

conditionally stable method - stability is controlled by the highest frequency
or shortest period T, (function of the element size used in the FEM model)

A<l

T

the time step should be small enough to resolve the motion of the structure.
For modal analysis it is controlled by the highest mode with the period T/,

At [ L
20
the time step should be small enough to follow the loading function —

acceleration records are typically given at constant time increments (e.g.
every 0.02 seconds) which may also influence the time step.

ol W IO oo ol s (N



Central difference method

CENTRAL DIFFERENCE METHOD: LINEAR SYSTEMS

1.0 Initial calculations

B ! B} o el e (A

b, mug . ¢,y mitg
1.1 (gn)o = v @)oo = :
T ol me, " ¢l me, (initial conditions)
T _ % TS :
qp = ((g1)o, .- .. (q7)0) qy = {(q1)o, ..., (q1)o)
12 Py = & py.
1.3 Solve: Mg = Py — Cqp — Kqp = qo.
1.4 Select Ar.
. (An?
1.5 q-1=qo— Arqo+ > 90
16 Ee= l M + R C. (effective stiffness matrix)
(Ar)? 2At
1 1 2
1.7 a= M-—C; b=K- =M.
(At)? 2At (Ar)?



Central difference method

2.0 Calculations for each time step i

2.1 Pi=8"p;.

22 Pi=P; - aqi-) — bq, (effective load vector)
2.3 Solve: Kq,+| =P =:: q,+|

24 Ifrequired: e

1

q;=—~(q,+|—q. D Q=
2At (A2

(Qi+1 —2q; +qi-1)

25 uiy = Pqiy.

3.0 Repetition for the next time step. Replace i by i + 1 and repeat steps 2.1 to 2.5
for the next time step.

for direct solution: delete steps 1.1, 1.2, 2.1 and 2.5
replace (1) g by u, (2) M, C, Kand P by m, ¢, k and p
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4. NEWMARK’S METHOD

implicit integration method

dynamic equilibrium condition
for direct solution x,—u;, f, — p; M, C,K— m,c, k

for modal analysis x,—q;, f,—P; M CK—->M,CK

x ., =x +Atc, +(0.5- BALK + f

SRTA : : _

n+l n+l

xn+l = 'xn + (1_ }/)Atxn + 7Atxn+l

(“discrete” equations of motion)

J

(Newmark’s equations)

| M +yALC+ PAPK |5,y = £,y —C| %, +(1-y)At %, |- K| x, + At x, + (05— B)Ar’%, |

J — _
N —~

~

~

K fn+l
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Newmark’s method

effective stiffness matrix

K =[M + yAtC + BAK]

effective load vector

"N

fon=foa—C[ %, +(1-7) A, |- K| x, + Ak, +(0.5- B) A%, |

system of coupled equations

PaN

K X1 :]Fn+1 — X1

unconditionally stable method
for y=1/2 and S = 1/4 (average acceleration method)

recommended time step depends on the shortest period of interest Az Ll %
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Newmark’s method

NEWMARK'S METHOD: LINEAR SYSTEMS

1.0 Initial calculations

@ mug . ¢, mug
1.1 (gn)o = v (Gn)o = .
7 ¢l me, U pIme,
o = (g)o, ..., (g1)0) q(’, = {(g1)o, .-, (g1)0)

12 Py=®"py.
1.3 Solve: Mqg = Py — Cqp — Kqy = qp.
1.4 Select Ar.
¥ &
1.5 K=K+ —C+ M
ﬂAr ﬁ(mﬂ

5 e Y
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Newmark’s method
2.0 Calculations for each time step i

2.1 P = ¢7'p,-.
22 AP; = AP; + aq; + bg;.
2.3 Solve: KAq; = AP, = Ag;.

24 Aq = Aq,—-}iq,+At(l—L)ij;.

p At p 2p
25 Aq; = : A ! I
. q; ﬁ(A )_ q! ﬁA’ ql 2ﬁ ql

26 Qi+1=qi+Aqi. Qs+ =q +AQ, Qi+ =q + AQ;.
2.7 ujiy) = PQqiy.

3.0 Repetition for the next time step. Replace i by i + 1 and implement steps 2.1 to 2.7
for the next time step.

for direct solution:  delete steps 1.1, 1.2, 2.1 and 2.7
replace (1) qbyu, (2) M,C, Kand P by m,c,kand p
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5. STABILITY AND COMPUTATIONAL ERROR

OF TIME INTEGRATION

SCHEMES
Integration Method Type of Method Critical Step Size (A7)
Central Different Explicit 2 ( Af < 1, J
W V4
Newmark Method Implicit 3.464
1 1
A/ ‘)/ = —,ﬁ = — @
more 2 6 (At <0.551T))
accurate (Linear Acceleration) | 1 e
than Newmark Method Implicit Unconditionally
_1 B = Stable ..
W Bty
(Constant-Average-
Acceleration)
Newmark Method Explicit 2 T
1 e (At < —Jj
=—,p= 0 VA
Feo i
(Central Difference)
Wilson- & Implicit Unconditionally Stable
when € >1.37
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Stability and computational error of time integration schemes

Free vibration problem: |mii+ ku =0 u(0)=1 and u(0)=0 = u(r)=coswt

Theoretical

: \ Average
Central \' v—acceleration
difference

0 (Ar=0.1T))
1
0 l 2 3
I/T”
“a
Errors: amplitude decay (AD) ‘ omecd 7 o AP .
period elongation (PE) 0 \(\ ,'[T TT—=’ nge;:]car,l

1t Exact‘-\\_y/, e ping:
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6. EXAMPLE - DIRECT INTEGRATION - CENTRAL DIFFERENCE METHOD

3 * 3
E =3.43*10"kN [/ m? I = blhz _03%03 —6.75*10™
- a, (1) g
Suly O
k| 310m 02 1
" T AN
1.7
3.10m k| 3.10m 10 25 34 T|sec]
0.30m/0.30m
_ aEEs— v—
* *10N7 * *1N—4
i 2*12151 _ 2*12 3.43 13?14 6.75*10 _18640kN | m -0.35

m = 60kN sec’/ m

K{k —k}{lsmo —18640} M{m o}zro o}
-k 2k —18640 37280 0 m 0 60

7, =0.58sec T, =0.22sec
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Example — direct integration — central difference method

Explicit time stepping scheme 1 71! 5 1
General forcing function Yns1 = [FM} |:][n —[K —FM}C" —[FM}CM}
R / !
'xn+1 = I:A—Z‘ZM:| (fn _Kxn)+ 2'xn _‘xn—l (Undamped SyStem)
- : _
LY L ke kel
Xy | 4 0 1 15 ) K(21) K(2,2) | x, ; X | 1%
M(2,2) |
)
At?
X, :m{fl ~K@D)*x —K(@1,2)*x’ }+ 2% X, —x._,
< At?
V1= Ve K@D K@) 2l -

\.
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Example — direct integration — central difference method

for the base acceleration case a(t)

.......
...........
.
. L
““““
o .

At? 2 o
— Mll *a '—Kll K1,2 * 2y 2%y —xt
LM e K 2)*7 2%, =)
At2 ..............................
= 1\422"‘01-—K21"‘1 K(2,2)*x2 (+2*x> —x
M(z,z){~~~........(. ________ )"a, (20) (2.2)*x7

for the problem considered
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Example — direct integration — central difference method

UIMAX 1.138665E-02 At =0.01sec
UZMAX 6.247208E-03

MAX BASE SHEAR 236.0421
Ok

~PAAANAANNANA

\/ vavvwvwv
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Example — direct integration — central difference method

UIMAX 1.110161E-02 At =0.05sec
UZMAX 7.008101E-03

MAX BASE SHEAR 263.9425

0k

< WVAUAvnVnUAUAVnVnUAUan

=7 vwWWﬁ%ﬂ%ﬁ%
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Example — direct integration — central difference method

UIMAX 1.150803E-02 T. 022

UZMAX 7 .565412E-03 At =0.08sec > Az, =% =——~=0.07
MAX BASE SHEAR 329.8402 T
Ok

/\/\ inaccurate solution
SAAAAAAAAAA

\\\j WWUUUUUUUUUUUUU

W/\%]' Wﬂvﬂ“ﬂvﬁvﬁw Aunvﬁvﬂn U”V M
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Example — direct integration — central difference method

g;:erf low in 250 Af =0.09sec > At

crit

unstable solution
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7. ANALYSIS OF NONLINEAR RESPONSE - AVERAGE ACCELERATION
METHOD

Incremental equilibrium condition Is

mAii, + cAu, +(Af) = Ap,

i

T (7(.;)‘){+l
Incremental resisting force
Afg) =(Kk,)_ Au U(K;) Au,
( S)z ( )SeC \ ( )T j (f_S)J
Y
(assumption)
Au;
secant stiffness:  (k;)., - "
(unknown) ’ !

tangent stiffness:  (k;),
(known) Need for an iterative process

within each time step...
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Analysis of nonlinear response — average acceleration method

AVERAGE ACCELERATION METHOD: NONLINEAR SYSTEMS

1.0 Initial calculations 1 1
(ﬂ :Z 4 :Ej
1.1 Solve: muy = pg — cug — (fs)o = wup.
1.2 Select At.
4
1.3 a=—m+ 2¢;and b = 2m.
At
2.0 Calculations for each time step i
2.1 Ap; = Ap; + au; + bu;. (effective load vector)
2.2 Determine the tangent stiffness matrix k;.
2.3 R'—k'+2c+ 4 m : . ,
- P=ERT B (effective stiffness matrix)
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Analysis of nonlinear response — average acceleration method

cont.
2.4 Solve for Au; from k; and Ap; using the iterative procedure of M N-R method
2
2.5 Afl,‘ = —Al.l,' — 2!],'.
At
4 4
26 Au; = Auw; — —u; — 2u;.
! (A[)z I At { 1
27 wiy =u; +Au;, 0,41 =u; + Au;, and ;4] = U; + Au;.

3.0 Repetition for the next time step. Replace i by i 4+ 1 and implement steps 2.1 to 2.6
for the next time step.

- unconditionally stable method

- no numerical damping

- recommended time step depends on the shortest period of interest
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Analysis of nonlinear response — average acceleration method

Modified Newton-Raphson (M N-R) iteration

,ﬁ M*U
by aa
' (3)
AR® Af o v
ltAf"T
! - Aj‘lzl |
MODIFIED NEWTON-RAPHSON ITERATION af
e iy l ky
1.0 [Initialize data. .
(0 (0) n ~ > ~
u, =uw  fo =) AR =Ap;, kr=k; | " :
. o - V- I Vo
2.0 Calculations for each iteration, j = 1,2,3, ...

2.1 Solve: kr Au') = ARY) — Au'/
Gy _ G-D )
22 wi,=uwl," +AuY
23 AfD =P 0™ 4 kr — k) Au?
24 ARYTD = ARY) — AW
3.0 Repetition for the next iteration. Replace j by j + 1 and repeat calculation
steps 2.1 to 2.4.

B ! B} o el e (A

-

To reduce computational effort,
the tangent stiffness matrix is
not updated for each iteration

u



8. HILBER-HUGHES-TAYLOR (HHT) METHOD (a — method)

implicit integration method — generalization of Newmark’s method
numerical damping of higher frequencies (elimination of high frequency
oscillations) + stable and second order convergent

dynamic equilibrium condition
for direct solution x,—u, f, — Pp; M, C,K— m,c, k

for modal analysis x,—q;, f,—P;, M CK—->M,CK

_ ) _ 2.. .. 2

X1 =x, + Ak, +(0.5- B) A%, + B, At e

X, =%, +(1—y) A&, + ALK,

(Newmark’s equations)

— |M¥,,,+(1+a)(Ck,, +Kx,,,)-a(Ck, + Kx,) = f(7,.,) = X,
(“discrete” equations of motion) I (unknowns)

~

t,,=t +(1+a)At
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HHT method
3 parameters — values for unconditional stability and second-order accuracy:

B=(1-a) /4 7/:%—05 ~0.3<a <0

the smaller value of o — more numerical damping is introduced to the system
for a = 0 — Newmark’s method with no numerical damping

HHT method for transient analysis of nonlinear problems

Mzﬁl + fint (xn+a’xn+a) - f(tn+a ! xn+a)
X =X +A + (O.5—,B)At23'én +,355n+1Af2 system of algebraic equations

X, =X + (1— 7/)At)'c'n + YAIX

Sint (X,,,chm) vector of internal forces
(depends non-linearly on displacements and velocities)

(*),e =@+a)(¢),., (), variables computed by convex combination
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