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Dynamic response analysis

For systems that behave in a linear elastic fashion…

- If N is small →  it is appropriate to solve numerically the equations

( )t  mu cu ku p 

- If N is large →  it may be advantageous to use modal analysis

( )t  Mq Cq Kq P 

- For systems with classical damping C is a diagonal matrix   →
J uncoupled differential equations (see resolution of SDOF systems)

( ) ( ) ( ) ( )n n n n n n nM q t C q t K q t P t   

- For systems with nonclassical damping C is not diagonal and 
the J equations are coupled  →  use numerical methods to 
solve the equations

M and K are diagonal matrices

n = 1, J



Dynamic response analysis

- The direct solution (using numerical methods) of the NxN system of equations

is adopted in the following situations:

( )t  mu cu ku p 

- For systems with few degrees of freedom

- For systems and excitations where most of the modes 
contribute significantly to the response

- For systems that respond into the non-linear range

- Numerical methods can also be used within the modal analysis for system with 
nonclassical damping



2. TIME-STEPPING PROCEDURE

- Equations of motion for linear MDOF system excited by force vector p(t) or
earthquake-induced ground motion

( ) or ( )gt u t   mu cu ku p mι  

( )gu t

initial conditions 0 0(0) and (0) u u u u 

time scale is divided into a series of time steps, usually of constant duration
1i it t t  

( ) ( ) ( ) ( )i i i i i i i it t t t   p p u u u u u u   

1 1 1 1i i i i i i i i         mu cu ku p mu cu ku p   

Explicit methods - equations of motion are used at time instant i
Implicit methods - equations of motion are used at time instant i+1

1 1 1i i i  u u u unknown vectors



Time-stepping procedure

- Modal equations for linear MDOF system excited by force vector p(t)

( )t  Mq Cq Kq P 

   
1

( )
J

n n
n

t q t t


u Φq�

( ) ( )T T T Tt t   M ΦmΦ C Φ cΦ K Φ kΦ P Φ p

1 1 1 1i i i i i i i i         Mq Cq Kq P Mq Cq Kq P   

unknown vectors 1 1 1i i i  q q q 



3. CENTRAL DIFFERENCE METHOD

explicit integration method

dynamic equilibrium condition
for direct solution xn → ui fn → pi M, C, K → m, c, k

for modal analysis xn → qi fn → Pi M, C, K → M, C, K
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Central difference method

for diagonal M and C, finding an inverse of
is trivial  (uncoupled equations)

1

2 2
11 











C

t
M

t

MTt


 

time step 
conditionally stable method - stability is controlled by the highest frequency 
or shortest period TM (function of the element size used in the FEM model)

the time step should be small enough to resolve the motion of the structure. 
For modal analysis it is controlled by the highest mode with the period TJ 

20
JTt �

the time step should be small enough to follow the loading function –
acceleration records are typically given at constant time increments (e.g. 
every 0.02 seconds) which may also influence the time step.



Central difference method

(initial conditions)

(effective stiffness matrix)



Central difference method

for direct solution: delete steps 1.1, 1.2, 2.1 and 2.5
replace (1) q by u, (2) M, C, K and P by m, c, k and p

(effective load vector)



4. NEWMARK’S METHOD

implicit integration method

dynamic equilibrium condition
for direct solution xn → ui fn → pi M, C, K → m, c, k

for modal analysis xn → qi fn → Pi M, C, K → M, C, K
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1 1 1 0.5n n n n n n nM t C t K x f C x t x K x t x t x                              

(“discrete” equations of motion)
(Newmark’s equations)

K̂ 1n̂f 



Newmark’s method

unconditionally stable method
for γ = 1/2 and β = 1/4 (average acceleration method)

recommended time step depends on the shortest period of interest 

][ˆ 2KttCMK  

    2
1 1

ˆ 1 0.5n n n n n n nf f C x tx K x tx t x                     

1 1 1
ˆˆ

n n nK x f x    

effective stiffness matrix

effective load vector

system of coupled equations

10
MTt �



Newmark’s method



Newmark’s method

for direct solution: delete steps 1.1, 1.2, 2.1 and 2.7
replace (1) q by u, (2) M, C, K and P by m, c, k and p



5. STABILITY AND COMPUTATIONAL ERROR OF TIME INTEGRATION
SCHEMES

JTt


   
 

( 0.551 )Jt T 

JTt


   
 

more 
accurate 

than



Stability and computational error of time integration schemes

Free vibration problem: 0 (0) 1 and (0) 0 ( ) cos nmu ku u u u t t      

Errors: amplitude decay (AD)
period elongation (PE)

( 0.1 )nt T 

numerical 
damping?



6. EXAMPLE – DIRECT INTEGRATION – CENTRAL DIFFERENCE METHOD
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Example – direct integration – central difference method

Explicit time stepping scheme
General forcing function
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Example – direct integration – central difference method

for the base acceleration case )(ta

 

  2
1

221
2

2
1

1
1

121
2

1
1

*2*)2,2(*)1,2(*)2,2(
)2,2(

*2*)2,1(*)1,1(*)1,1(
)1,1(















nnnnnn

nnnnnn

xxxKxKaM
M

tx

xxxKxKaM
M

tx

 

  2
1

221
2

2
1

1
1

121
2

1
1

*2*37280*18640*60
60

*2*18640*18640*60
60















nnnnnn

nnnnnn

xxxxatx

xxxxatx

for the problem considered



Example – direct integration – central difference method

sec01.0t



Example – direct integration – central difference method

0.05sect 



Example – direct integration – central difference method

07.022.0sec08.0 min 


Ttt crit

inaccurate solution



Example – direct integration – central difference method

(unstable solution)

crittt  sec09.0

unstable solution



7. ANALYSIS OF NONLINEAR RESPONSE – AVERAGE ACCELERATION
METHOD

 i i S ii
      m u c u f p 

Incremental equilibrium condition

Incremental resisting force

     secS i i i ii T
   f k u k u�

 secik

 i T
k

secant stiffness:

tangent stiffness:

(unknown)

(assumption)

(known) Need for an iterative process 
within each time step…



Analysis of nonlinear response – average acceleration method

1 1;
4 2

    
 

(effective load vector)

(effective stiffness matrix)



Analysis of nonlinear response – average acceleration method

cont.

M N-R method

- unconditionally stable method

- no numerical damping

- recommended time step depends on the shortest period of interest 



Analysis of nonlinear response – average acceleration method

Modified Newton-Raphson (M N-R) iteration

To reduce computational effort, 
the tangent stiffness matrix is 
not updated for each iteration 



8. HILBER-HUGHES-TAYLOR (HHT) METHOD (α – method)
implicit integration method – generalization of Newmark’s method
numerical damping of higher frequencies (elimination of high frequency 
oscillations) + stable and second order convergent

dynamic equilibrium condition
for direct solution xn → ui fn → pi M, C, K → m, c, k

for modal analysis xn → qi fn → Pi M, C, K → M, C, K
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(“discrete” equations of motion)

(Newmark’s equations)

 1 1n nt t t    

1nx  

(unknowns)



HHT method

 2 11 4 0.3 0
2

          

3 parameters – values for unconditional stability and second-order accuracy:

the smaller value of α – more numerical damping is introduced to the system
for α = 0 – Newmark’s method with no numerical damping

HHT method for transient analysis of nonlinear problems
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 int ,n nf x x   vector of internal forces 
(depends non-linearly on displacements and velocities)
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system of algebraic equations


