2C9 Design for seismic and climate changes

Jiří Máca

List of lectures

- 1. Elements of seismology and seismicity I
- 2. Elements of seismology and seismicity II
- 3. Dynamic analysis of single-degree-of-freedom systems I
- 4. Dynamic analysis of single-degree-of-freedom systems II
- 5. Dynamic analysis of single-degree-of-freedom systems III
- 6. Dynamic analysis of multi-degree-of-freedom systems
- 7. Finite element method in structural dynamics I
 - 8. Finite element method in structural dynamics II
 - 9. Earthquake analysis I

Finite element method in structural dynamics I Free vibration analysis

- 1. Finite element method in structural dynamics
- 2. Free vibration
- 3. Rayleigh Ritz method
- 4. Vector iteration techniques
- 5. Inverse vector iteration method + examples
- 6. Subspace iteration method
- 7. Examples

1. FINITE ELEMENT METHOD IN STRUCTURAL DYNAMICS

Statics

 $\mathbf{K}\mathbf{r} = \mathbf{f}$

Forces do not vary with time

Structural stiffness K considered only

 $\mathbf{K} = A_{e=1}^{N_e} \mathbf{K}_e$ $\mathbf{K}_e = \int_V \mathbf{B}^T \mathbf{D} \mathbf{B} dV$

Dynamics

$$\mathbf{M} \, \ddot{\mathbf{r}}(t) + \mathbf{K} \, \mathbf{r}(t) = \mathbf{0}$$

$$\mathbf{M} \ddot{\mathbf{r}}(t) + \mathbf{C} \dot{\mathbf{r}}(t) + \mathbf{K} \mathbf{r}(t) = \mathbf{f}(t)$$

Operator $A_{e=1}^{N_e}$ denotes the direct assembly procedure for assembling the stiffness matrix for each element, e = 1 to N_e , where N_e is the number of elements

Free vibration

No external forces present Structural stiffness K and mass M considered

Forced vibration

External forces (usually time dependent) present Structural <u>stiffness</u> **K**, <u>mass</u> **M** and possibly <u>damping</u> **C** considered

Inertial force (per unit volume) ρ – mass density

$$\hat{\mathbf{f}}_i = -\rho \mathbf{\ddot{u}} \implies \mathbf{f}_i = \int_V -\rho \mathbf{\ddot{u}} dV$$

Damping force (per unit volume) ξ – damping coefficient

Principle of virtual displacements

$$\hat{\mathbf{f}}_{d} = -\boldsymbol{\xi} \dot{\mathbf{u}} \implies \mathbf{f}_{d} = \int_{V} -\boldsymbol{\xi} \dot{\mathbf{u}} dV$$
$$\delta W_{I} = \delta W_{E}$$

internal virtual work = external virtual work

$$\delta W_I = \int_V \delta \varepsilon^T \sigma \, dV$$

 σ – stress vector ϵ – strain vector

$$\delta W_E = \int_V \delta \mathbf{u}^T \hat{\mathbf{f}}_i \, dV + \int_V \delta \mathbf{u}^T \hat{\mathbf{f}}_d \, dV$$

Finite Element context	$\mathbf{u} = \mathbf{N}\mathbf{r}$ $\dot{\mathbf{u}} = \mathbf{N}\dot{\mathbf{r}}$ $\ddot{\mathbf{u}} = \mathbf{N}\ddot{\mathbf{r}}$
	$\mathbf{u}^T = \mathbf{r}^T \mathbf{N}^T \delta \mathbf{u}^T = \delta \mathbf{r}^T \mathbf{N}^T$
	\mathbf{r} – nodal displacements \mathbf{N} – interpolation (shape) functions
Strain – displacement relations	$\boldsymbol{\varepsilon} = \partial^T \mathbf{u} = \partial^T \mathbf{N} \mathbf{r} = \mathbf{B} \mathbf{r}$ $\delta \boldsymbol{\varepsilon}^T = \delta \mathbf{r}^T \mathbf{B}^T$
Constitutive relations (linear elastic material)	$\sigma = \mathbf{D} \varepsilon = \mathbf{D} \mathbf{B} \mathbf{r}$ \mathbf{D} – constitutive matrix

Internal virtual work
$$\delta W_{I} = \int_{V} \delta \varepsilon^{T} \sigma \, dV = \delta \mathbf{r}^{T} \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \, dV \mathbf{r}$$
External virtual work
$$\delta W_{E} = \int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{i} \, dV + \int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{d} \, dV$$

$$= -\delta \mathbf{u}^{T} \int_{V} \rho \ddot{\mathbf{u}} \, dV - \delta \mathbf{u}^{T} \int_{V} \xi \dot{\mathbf{u}} \, dV$$

$$= -\delta \mathbf{r}^{T} \int_{V} \mathbf{N}^{T} \rho \mathbf{N} \, dV \ddot{\mathbf{r}} - \delta \mathbf{r}^{T} \int_{V} \mathbf{N}^{T} \xi \mathbf{N} \, dV \dot{\mathbf{r}}$$

$$-\delta W_{E} + \delta W_{I} = 0$$

$$\delta \mathbf{r}^{T} \left(\int_{V} \mathbf{N}^{T} \rho \mathbf{N} \, dV \ddot{\mathbf{r}} + \int_{V} \mathbf{N}^{T} \xi \mathbf{N} \, dV \dot{\mathbf{r}} + \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \, dV \mathbf{r} \right) = 0$$
Dynamic equations of equilibrium
$$\mathbf{M} \ddot{\mathbf{r}} + \mathbf{C} \dot{\mathbf{r}} + \mathbf{K} \mathbf{r} = \mathbf{0}$$

$$\mathbf{M} \ddot{\mathbf{r}} + \mathbf{C} \dot{\mathbf{r}} + \mathbf{K} \mathbf{r} = \mathbf{0}$$

Mass matrix (consistent formulation)	$\mathbf{M} = \int_{V} \mathbf{N}^{T} \rho \mathbf{N} dV$
Damping matrix	$\mathbf{C} = \int \mathbf{N}^T \boldsymbol{\xi} \mathbf{N} dV$

$$\mathbf{C} = \int_{V} \mathbf{N}^{T} \boldsymbol{\xi} \, \mathbf{N} \, dV$$

Stiffness matrix

Diagonal mass matrix

$$\mathbf{K} = \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \, dV$$

Mass matrix - other possible formulations

equal mass lumping - lumped-mass idealization with equal diagonal terms special mass lumping - diagonal mass matrix, terms proportional to the consistent mass matrix

Beam element length *L*, modulus of elasticity *E*, cross-section area *A* moment of inertia (2nd moment of area) I_z , uniform mass *m*

Starting point – approximation of displacements

 $\mathbf{u} = \left\{u, v\right\}^T$

Exact solution (based on the assumptions adopted)

- Approximation of axial displacements

$$\rightarrow u(x) = \left(1 - \frac{x}{L}\right)u_1 + \frac{x}{L}u_2 = h_1u_1 + h_2u_2$$

 u_1 – left-end axial displacement u_2 – right-end axial displacement

- Approximation of deflections

$$\rightarrow v(x) = \left[1 - 3\left(\frac{x}{L}\right)^2 + 2\left(\frac{x}{L}\right)^3 \right] v_1 + \left[\left(\frac{x}{L}\right) - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3 \right] L \varphi_1$$

$$+ \left[3\left(\frac{x}{L}\right)^2 - 2\left(\frac{x}{L}\right)^3 \right] v_2 + \left[-\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3 \right] L \varphi_2$$

$$v(x) = h_3 v_1 + h_4 \varphi_1 + h_5 v_2 + h_6 \varphi_2$$

$$v_1 = 1$$

$$v_1 - \text{left-end deflection}$$

$$h_4$$

 v_2 – right-end deflection φ_1 – left-end rotation φ_2 – right-end rotation

 $\varphi_1 = 1$

 $\mathbf{r} = \{u_1, v_1, \varphi_1, u_2, v_2, \varphi_2\}^T$ $\mathbf{N} = \begin{bmatrix} h_1 & 0 & 0 & h_2 & 0 & 0\\ 0 & h_3 & h_4 & 0 & h_5 & h_6 \end{bmatrix} \mathbf{u} = \mathbf{N}\mathbf{r}$ Vector of nodal displacements Matrix of interpolation functions $\begin{cases} N_x \\ M_z \end{cases} = \begin{bmatrix} EA & 0 \\ 0 & EI_z \end{bmatrix} \begin{cases} \frac{du}{dx} \\ \frac{d^2v}{dx^2} \end{cases}$ Constitutive relations $\sigma = D\epsilon$ $\bullet \quad \mathbf{\varepsilon} = \partial^T \mathbf{u} = \partial^T \mathbf{N} \mathbf{r} = \mathbf{B} \mathbf{r}$ Strain – displacement relations $\mathbf{B} = \begin{vmatrix} \frac{dh_1}{dx} & 0 & 0 & \frac{dh_2}{dx} & 0 & 0 \\ 0 & \frac{d^2h_3}{dx^2} & \frac{d^2h_4}{dx^2} & 0 & \frac{d^2h_5}{dx^2} & \frac{d^2h_6}{dx^2} \end{vmatrix}$

Element stiffness matrix

$$\mathbf{K} = \int_{0}^{L} \mathbf{B}^{T} \mathbf{D} \mathbf{B} dx$$

$$\mathbf{K} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} \\ 0 & \frac{6EI_z}{L^2} & \frac{4EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & \frac{2EI_z}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} & 0 & \frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} \\ 0 & \frac{6EI_z}{L^2} & \frac{2EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & \frac{4EI_z}{L} \end{bmatrix}$$

Element mass matrix

consistent formulation

$$\mathbf{M} = \int_{0}^{L} \mathbf{N}^{T} m \ \mathbf{N} \ dx$$

$$\mathbf{M} = \frac{mL}{420} \begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0 \\ & 156 & 22L & 0 & 54 & -13L \\ & & 4L^2 & 0 & 13L & -3L^2 \\ & & 140 & 0 & 0 \\ & & & 156 & -22L \\ sym & & & & 4L^2 \end{bmatrix}$$

Element other position of deflect v(x) = (1)	The mass matrix solutions $-\frac{x}{L} v_1 + \frac{x}{L} v_2 = h_1 v_1 + h_2 v_2$	$\mathbf{M} = \frac{mL}{420}$	0 140	0 0 0	70 0 0 140	0 70 0 0 140	0 0 0 0 0
Elemen diagona $v(x) = h_1$	t mass matrix I mass matrix $v_1 + h_2 v_2$	<i>sym</i>	0 (1 () () () ()) ()	0 0	0
where	$h_1 = 1$ for $x \le l/2$ $h_1 = 0$ for $x > l/2$	$\mathbf{M} = \frac{mL}{2}$	() () 0 1 0	0 0	
	$h_2 = 0 \text{ for } x < l/2$ $h_2 = 1 \text{ for } x \ge l/2$	sym			1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	

Comparison of Finite Element and exact solution

TABLE 17.10.1NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM:CONSISTENT-MASS FINITE ELEMENT AND EXACT SOLUTIONS

Number of Finite Elements, N_e						
Mode	1	2	3	4	5	Exact
1	3.53273	3.51772	3.51637	3.51613	3.51606	3.51602
2	34.8069	22.2215	22.1069	22.0602	22.0455	22.0345
3		75.1571	62.4659	62.1749	61.9188	61.6972
4		218.138	140.671	122.657	122.320	120.902
5			264.743	228.137	203.020	199.860
6			527.796	366.390	337.273	298.556
7				580.849	493.264	416.991
8				953.051	715.341	555.165
9					1016.20	713.079
10					1494.88	890.732

Source: R. R. Craig, Jr., Structural Dynamics, Wiley, New York, 1981.

Comparison of Finite Element and exact solution

TABLE 17.10.2NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM:LUMPED-MASS FINITE ELEMENT AND EXACT SOLUTIONS

Number of Finite Elements, N_e						
Mode	1	2	3	4	5	Exact
1	2.44949	3.15623	3.34568	3.41804	3.45266	3.51602
2		16.2580	18.8859	20.0904	20.7335	22.0345
3			47.0284	53.2017	55.9529	61.6972
4				92.7302	104.436	120.902
5					153.017	199.860

Source: R. R. Craig, Jr., Structural Dynamics, Wiley, New York, 1981.

Accuracy of FE analysis is improved by increasing number of DOFs

2. FREE VIBRATION

natural vibration frequencies and modes

 $\mathbf{M}\,\ddot{\mathbf{r}}(t) + \mathbf{K}\,\mathbf{r}(t) = \mathbf{0}$

equation of motion for undamped free vibration of MDOF system

$$\mathbf{r}(t) = \mathbf{\phi}_n (A_n \cos \omega_n t + B_n \sin \omega_n t)$$

motions of a system in free vibrations are simple harmonic

$$\ddot{\mathbf{r}}(t) = -\omega_n^2 \mathbf{r}(t)$$

$$\left(\mathbf{K} - \omega_n^2 \mathbf{M}\right) \boldsymbol{\phi}_n = \mathbf{0}$$

$$\det\left(\mathbf{K} - \omega_n^2 \mathbf{M}\right) = 0$$

free vibration equation, eigenvalue equation - natural mode ω_n - natural frequency ϕ_n

nontrivial solution condition frequency equation (polynomial of order *N*) not a practical method for larger systems

3. RAYLEIGH – RITZ METHOD

general technique for reducing the number of degrees of freedom

$$\begin{pmatrix} \mathbf{K} - \boldsymbol{\omega}_n^2 \mathbf{M} \end{pmatrix} \boldsymbol{\phi}_n = \mathbf{0}$$

$$\begin{pmatrix} \mathbf{K} - \boldsymbol{\lambda} \mathbf{M} \end{pmatrix} \boldsymbol{\phi} = \mathbf{0}$$

$$\boldsymbol{\phi}^T \mathbf{K} \boldsymbol{\phi} = \boldsymbol{\lambda} \boldsymbol{\phi}^T \mathbf{M} \boldsymbol{\phi}$$

$$\boldsymbol{\rho}^T \mathbf{K} \boldsymbol{\phi} = \boldsymbol{\lambda} \mathbf{\phi}^T \mathbf{K} \boldsymbol{\phi}$$

Rayleigh's quotient

Properties

- 1. When is an eigenvector ϕ_n , Rayleigh's quotient is equal to the corresponding eigenvalue $\lambda = \omega_n^2$
- 2. Rayleigh's quotient is bounded between the smallest and largest eigenvalues

$$\omega_1^2 \leq \lambda_1 \quad \omega_2^2 \leq \lambda_2 \quad \dots \quad \omega_n^2 \leq \lambda_n$$

Rayleigh – Ritz method

$\mathbf{u}(t) = \mathbf{\Psi} \mathbf{z}(t)$	displacements or modal shapes are expressed as a
	linear combination of shape vectors Ψ_j , $j = 1, 2 J < N$
	<i>Ritz vectors</i> make up the columns of $N \times J$ matrix Ψ
$\phi = \Psi z$	z is a vector of J generalized coordinates

substituting the Ritz transformation in a system of *N* equations of motion $K\ddot{u} + C\dot{u} + Ku = sp(t)$

we obtain a system of J equations in generalized coordinates

 $\tilde{\mathbf{m}}\ddot{\mathbf{z}} + \tilde{\mathbf{c}}\dot{\mathbf{z}} + \tilde{\mathbf{k}}\mathbf{z} = \tilde{\mathbf{s}}p(t)$

 $\tilde{\mathbf{m}} = \boldsymbol{\Psi}^T \mathbf{M} \boldsymbol{\Psi} \quad \tilde{\mathbf{c}} = \boldsymbol{\Psi}^T \mathbf{C} \boldsymbol{\Psi} \quad \tilde{\mathbf{k}} = \boldsymbol{\Psi}^T \mathbf{K} \boldsymbol{\Psi} \quad \tilde{\mathbf{s}} = \boldsymbol{\Psi}^T \mathbf{s}$

Ritz transformation has made it possible to reduce original set of *N* equations in the nodal displacement **u** to a smaller set of *J* equations in the generalized coordinates z

Rayleigh – Ritz method

substituting the Ritz transformation in a Rayleigh's quotient

$$\lambda = \frac{\phi^T \mathbf{K} \phi}{\phi^T \mathbf{M} \phi} = \frac{\mathbf{z}^T \Psi^T \mathbf{K} \Psi \mathbf{z}}{\mathbf{z}^T \Psi^T \mathbf{M} \Psi \mathbf{z}} = \rho(\mathbf{z})$$

and using Rayleigh's stationary condition

$$\frac{\partial \rho(z)}{\partial z_i} = 0 \qquad i = 1, 2, \dots J$$

we obtain the reduced eigenvalue problem

$$\begin{split} \tilde{\mathbf{k}}\mathbf{z} &= \rho \, \tilde{\mathbf{m}}\mathbf{z} & \Rightarrow \rho, \mathbf{z} \quad \text{solution of all eigenvalues and eigenmodes} \\ & \text{e.g. Jacobi's method of rotations} \\ & \tilde{\mathbf{m}} &= \mathbf{\Psi}^T \, \mathbf{M} \, \mathbf{\Psi} \quad \tilde{\mathbf{k}} &= \mathbf{\Psi}^T \, \mathbf{K} \, \mathbf{\Psi} \\ & \omega_1^2 &\leq \rho_1 \ \omega_2^2 \leq \rho_2 \ \dots \ \omega_J^2 \leq \rho_J \qquad \mathbf{\phi}_i = \mathbf{\psi}_i \mathbf{z}_i \end{split}$$

Rayleigh – Ritz method

Selection of Ritz vectors GENERATION OF FORCE-DEPENDENT RITZ VECTORS

- **1.** Determine the first vector, ψ_1 .
 - **a.** Determine \mathbf{y}_1 by solving: $\mathbf{k}\mathbf{y}_1 = \mathbf{s}$.
 - **b.** Normalize $\mathbf{y}_1: \psi_1 = \mathbf{y}_1 \div (\mathbf{y}_1^T \mathbf{m} \mathbf{y}_1)^{1/2}$.
- **2.** Determine additional vectors, ψ_n , n = 2, 3, ..., J.
 - **a.** Determine \mathbf{y}_n by solving: $\mathbf{k}\mathbf{y}_n = \mathbf{m}\psi_{n-1}$.
 - **b.** Orthogonalize y_n with respect to previous $\psi_1, \psi_2, \ldots, \psi_{n-1}$ by repeating the following steps for $i = 1, 2, \ldots, n-1$:
 - $a_{in} = \boldsymbol{\psi}_i^T \mathbf{m} \mathbf{y}_n$.

•
$$\hat{\psi}_n = \mathbf{y}_n - a_{in}\psi_i$$
.

•
$$\mathbf{y}_n = \widehat{\psi}_n$$

c. Normalize $\hat{\psi}_n : \psi_n = \hat{\psi}_n \div (\hat{\psi}_n^T \mathbf{m} \hat{\psi}_n)^{1/2}$.

4. VECTOR ITERATION TECHNIQUES

Inverse iteration (Stodola-Vianello)

Algorithm to determine the **lowest** eigenvalue

$$\mathbf{K}\overline{\mathbf{x}}_{k+1} = \mathbf{M}\mathbf{x}_k \Longrightarrow \overline{\mathbf{x}}_{k+1} = \mathbf{K}^{-1}\mathbf{M}\mathbf{x}_k$$
$$\mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{(\overline{\mathbf{x}}_{k+1}^T\mathbf{M}\overline{\mathbf{x}}_{k+1})^{1/2}}$$
$$\overline{\mathbf{x}}_{k+1} \Longrightarrow \mathbf{\phi}_1 \quad as \quad k \to \infty$$

Vector iteration techniques

Forward iteration (Stodola-Vianello)

Algorithm to determine the **highest** eigenvalue

$$\mathbf{M}\overline{\mathbf{x}}_{k+1} = \mathbf{K}\mathbf{x}_k \Longrightarrow \overline{\mathbf{x}}_{k+1} = \mathbf{M}^{-1}\mathbf{K}\mathbf{x}_k$$
$$\mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{(\overline{\mathbf{x}}_{k+1}^T\mathbf{M}\overline{\mathbf{x}}_{k+1})^{1/2}}$$
$$\overline{\mathbf{x}}_{k+1} \Longrightarrow \mathbf{\phi}_n \quad as \quad k \to \infty$$

5. INVERSE VECTOR ITERATION METHOD

- 1. Starting vector $\mathbf{x}_{!}$ arbitrary choice $\mathbf{R}_{1} = \mathbf{M}\mathbf{x}_{1}$ $\mathbf{K}\overline{\mathbf{x}}_{2} = \mathbf{R}_{1}$ 2. $\mathbf{K}\overline{\mathbf{x}}_{k+1} = \mathbf{M}\mathbf{x}_{k} \implies \overline{\mathbf{x}}_{k+1} = \mathbf{K}^{-1}\mathbf{M}\mathbf{x}_{k}$ 3. $\boldsymbol{\lambda}^{(k+1)} = \frac{\overline{\mathbf{x}}_{k+1}^{T}\mathbf{K}\overline{\mathbf{x}}_{k+1}}{\overline{\mathbf{x}}_{k+1}^{T}\mathbf{M}\overline{\mathbf{x}}_{k+1}}$ (Rayleigh's quotient) 4. $\frac{\left|\boldsymbol{\lambda}^{(k+1)} - \boldsymbol{\lambda}^{(k)}\right|}{\boldsymbol{\lambda}^{(k+1)}} \leq tol$
- 5. If convergence criterion is not satisfied, normalize

$$\mathbf{x}_{(k+1)} = \frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^T \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1/2}} \text{ and go back to 2. and set } k = k+1$$

Inverse vector iteration method

6. For the last iteration (k+1), when convergence is satisfied

$$\lambda_{1} = \omega_{1}^{2} = \lambda^{(k+1)} \qquad \mathbf{\phi}_{1} = \mathbf{x}_{(k+1)} = \frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1/2}}$$

Gramm-Schmidt orthogonalisation

to progress to other than limiting eigenvalues (highest and lowest)

evaluation of ϕ_{n+1} correction of trial vector **x**

$$\tilde{\mathbf{x}} = \mathbf{x} - \sum_{j=1}^{n} \frac{\mathbf{\phi}_{j}^{T} \mathbf{M} \mathbf{x}}{\mathbf{\phi}_{j}^{T} \mathbf{M} \mathbf{\phi}_{j}} \mathbf{\phi}_{j}$$

Inverse vector iteration method

Vector iteration with shift μ

the shifting concept enables computation of any eigenpair

 $\lambda = \overline{\lambda} + \mu$ $\overline{K}\phi = \overline{\lambda}M\phi$ $\overline{K} = K - \mu M$

eigenvectors of the two eigenvalue problems are the same inverse vector iteration converge to the eigenvalue closer to the shifted origin, e.g. to $\tilde{\lambda}_3$, see (c)

Inverse vector iteration method

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Appendix – flexibility matrix

6. SUBSPACE ITERATION METHOD

efficient method for eigensolution of large systems when only the lower modes are of interest similar to inverse iteration method - iteration is performed simultaneously on a number of trial vectors mm – smaller of 2p and p+8, p is the number of modes to be determined (p is usually much less then N, number of DOF)

1. Staring vectors \mathbf{X}_1

$$\mathbf{R}_1 = \mathbf{M}\mathbf{X}_1$$
$$\mathbf{K}\overline{\mathbf{X}}_2 = \mathbf{R}_1$$

- 2. Subspace iteration
 - a) $\mathbf{K}\overline{\mathbf{X}}_{k+1} = \mathbf{M}\mathbf{X}_k$
 - b) Ritz transformation

$$\tilde{\mathbf{K}}_{k+1} = \overline{\mathbf{X}}_{k+1}^T \mathbf{K} \overline{\mathbf{X}}_{k+1} \quad \tilde{\mathbf{M}}_{k+1} = \overline{\mathbf{X}}_{k+1}^T \mathbf{M} \overline{\mathbf{X}}_{k+1}$$

Subspace iteration method

- 2. Subspace iteration cont.
 - c) Reduced eigenvalue problem (*m* eigenvalues)

 $\tilde{\mathbf{K}}_{k+1}\mathbf{Q}_{k+1} = \mathbf{\Omega}_{k+1}^2 \tilde{\mathbf{M}}_{k+1}\mathbf{Q}_{k+1}$

d) New vectors

$$\mathbf{X}_{k+1} = \overline{\mathbf{X}}_{k+1}\mathbf{Q}_{k+1}$$

- e) Go back to 2 a)
- 3. Sturm sequence check

verification that the required eigenvalues and vectors have been calculated - i.e. first *p* eigenpairs

Subspace iteration method - combines vector iteration method with the transformation method

7. EXAMPLES

Examples

	exact solution	3 elem	6 elem
f_1 [Hz]	28,662	34,285	28,845
f_2 [Hz]	41,863	65,623	42,393
f_3 [Hz]	50,653	-	51,474

Recommendation:

it is good to divide beams into (at least) 2 elements in the dynamic FE analysis

Examples – 3-D frame (turbomachinery frame foundation)

Examples – 3-D frame (turbo-machinery frame foundation)

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Examples – 3-D frame (turbo-machinery frame foundation)

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Examples – 3-D frame + plate + elastic foundation

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Examples – cable-stayed bridge

4. Vlastní tvar - vlastní frekvence $f_4 = 1,549$ Hz

Examples – cable-stayed bridge

7. Vlastní tvar - vlastní frekvence $f_7 = 2,153$ Hz

8. Vlastní tvar - vlastní frekvence $f_8 = 2,186$ Hz

