2C9
 Design for seismic and climate changes

Jiří Máca

List of lectures

1. Elements of seismology and seismicity I
2. Elements of seismology and seismicity II
3. Dynamic analysis of single-degree-of-freedom systems I
4. Dynamic analysis of single-degree-of-freedom systems II
5. Dynamic analysis of single-degree-of-freedom systems III
6. Dynamic analysis of multi-degree-of-freedom systems
7. Finite element method in structural dynamics I
8. Finite element method in structural dynamics II
9. Earthquake analysis I

Finite element method in structural dynamics I Free vibration analysis

1. Finite element method in structural dynamics
2. Free vibration
3. Rayleigh - Ritz method
4. Vector iteration techniques
5. Inverse vector iteration method + examples
6. Subspace iteration method
7. Examples

1. FINITE ELEMENT METHOD IN STRUCTURAL DYNAMICS

Statics

$$
\begin{aligned}
& \mathbf{K r}=\mathbf{f} \\
& \mathbf{K}=A_{e=1}^{N_{e}} \mathbf{K}_{e} \\
& \mathbf{K}_{e}=\int_{V} \mathbf{B}^{T} \mathbf{D B} d V
\end{aligned}
$$

Forces do not vary with time
Structural stiffness \mathbf{K} considered only
Operator $A_{e=1}^{N_{e}}$ denotes the direct assembly procedure for assembling the stiffness matrix for each element, $\mathrm{e}=1$ to N_{e}, where N_{e} is the number of elements

Dynamics

$$
\mathbf{M \ddot { \mathbf { r } } (t) + \mathbf { K r } (t) = \mathbf { 0 }}
$$

Free vibration
No external forces present
Structural stiffness \mathbf{K} and mass \mathbf{M} considered
Forced vibration
$\mathbf{M \dot { \mathbf { r } }}(t)+\mathbf{C} \dot{\mathbf{r}}(t)+\mathbf{K r}(t)=\mathbf{f}(t)$
External forces (usually time dependent) present Structural stiffness \mathbf{K}, mass \mathbf{M} and possibly damping C considered

Finite Element Method in structural dynamics
Inertial force (per unit volume)
ρ-mass density

$$
\hat{\mathbf{f}}_{i}=-\rho \ddot{\mathbf{u}} \Rightarrow \mathbf{f}_{i}=\int_{V}-\rho \ddot{\mathbf{u}} d V
$$

Damping force (per unit volume)
ξ-damping coefficient
Principle of virtual displacements

$$
\begin{gathered}
\hat{\mathbf{f}}_{d}=-\xi \dot{\mathbf{u}} \Rightarrow \mathbf{f}_{d}=\int_{V}-\xi \dot{\mathbf{u}} d V \\
\delta W_{I}=\delta W_{E}
\end{gathered}
$$

internal virtual work = external virtual work
$\delta W_{I}=\int_{V} \delta \mathbf{\varepsilon}^{T} \boldsymbol{\sigma} d V \quad \boldsymbol{\sigma}-$ stress vector $\boldsymbol{\varepsilon}-$ strain vector
$\delta W_{E}=\int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{i} d V+\int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{d} d V$

Finite Element Method in structural dynamics

Finite Element context

$$
\begin{aligned}
& \mathbf{u}=\mathbf{N r} \quad \dot{\mathbf{u}}=\mathbf{N} \dot{\mathbf{r}} \quad \ddot{\mathbf{u}}=\mathbf{N} \dot{\mathbf{r}} \\
& \mathbf{u}^{T}=\mathbf{r}^{T} \mathbf{N}^{T} \quad \delta \mathbf{u}^{T}=\delta \mathbf{r}^{T} \mathbf{N}^{T} \\
& \mathbf{r} \text { - nodal displacements } \\
& \mathbf{N} \text { - interpolation (shape) functions }
\end{aligned}
$$

Strain - displacement relations

$$
\begin{aligned}
& \boldsymbol{\varepsilon}=\partial^{T} \mathbf{u}=\partial^{T} \mathbf{N} \mathbf{r}=\mathbf{B} \mathbf{r} \\
& \delta \boldsymbol{\varepsilon}^{T}=\delta \mathbf{r}^{T} \mathbf{B}^{T}
\end{aligned}
$$

Constitutive relations
(linear elastic material)

$$
\boldsymbol{\sigma}=\mathbf{D} \boldsymbol{\varepsilon}=\mathbf{D} \mathbf{B} \mathbf{r}
$$

D - constitutive matrix

Finite Element Method in structural dynamics

Internal virtual work $\quad \delta W_{I}=\int_{V} \delta \boldsymbol{\varepsilon}^{T} \boldsymbol{\sigma} d V=\delta \mathbf{r}^{T} \int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} d V \mathbf{r}$
External virtual work $\quad \delta W_{E}=\int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{i} d V+\int_{V} \delta \mathbf{u}^{T} \hat{\mathbf{f}}_{d} d V$

$$
=-\delta \mathbf{u}^{T} \int_{V} \rho \mathbf{\mathbf { u }} d V-\delta \mathbf{u}^{T} \int_{V} \xi \dot{\mathbf{u}} d V
$$

$=-\delta \mathbf{r}^{T} \int_{V} \mathbf{N}^{T} \rho \mathbf{N} d V \ddot{\mathbf{r}}-\delta \mathbf{r}^{T} \int_{V} \mathbf{N}^{T} \xi \mathbf{N} d V \dot{\mathbf{r}}$

$$
\begin{aligned}
& -\delta W_{E}+\delta W_{I}=0 \\
& \delta \mathbf{r}^{T}\left(\int_{V} \mathbf{N}^{T} \rho \mathbf{N} d V \ddot{\mathbf{r}}+\int_{V} \mathbf{N}^{T} \xi \mathbf{N} d V \dot{\mathbf{r}}+\int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} d V \mathbf{r}\right)=0
\end{aligned}
$$

Dynamic equations of equilibrium

$$
\mathbf{M i ̈}+\mathbf{C} \dot{\mathbf{r}}+\mathbf{K r}=\mathbf{0}
$$

Finite Element Method in structural dynamics

Mass matrix
(consistent formulation)

$$
\mathbf{M}=\int_{V} \mathbf{N}^{T} \rho \mathbf{N} d V
$$

Damping matrix

$$
\mathbf{C}=\int_{V} \mathbf{N}^{T} \xi \mathbf{N} d V
$$

Stiffness matrix

$$
\mathbf{K}=\int_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} d V
$$

Mass matrix - other possible formulations
Diagonal mass matrix equal mass lumping - lumped-mass idealization with equal diagonal terms
special mass lumping - diagonal mass matrix, terms proportional to the consistent mass matrix

Finite Element Method in structural dynamics

Beam element length L, modulus of elasticity E, cross-section area A moment of inertia (2nd moment of area) I_{z}, uniform mass m

Starting point - approximation of displacements

$$
\mathbf{u}=\{u, v\}^{T}
$$

Exact solution (based on the assumptions adopted)

- Approximation of axial displacements

$$
\begin{aligned}
\rightarrow & u(x)=\left(1-\frac{x}{L}\right) u_{1}+\frac{x}{L} u_{2}=h_{1} u_{1}+h_{2} u_{2} \\
& u_{1}-\text { left-end axial displacement } \\
& u_{2} \text { - right-end axial displacement }
\end{aligned}
$$

Beam element

- Approximation of deflections

$$
\begin{aligned}
& \rightarrow v(x)=\left[1-3\left(\frac{x}{L}\right)^{2}+2\left(\frac{x}{L}\right)^{3}\right] v_{1}+\left[\left(\frac{x}{L}\right)-2\left(\frac{x}{L}\right)^{2}+\left(\frac{x}{L}\right)^{3}\right] L \varphi_{1} \\
&+\left[3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] v_{2}+\left[-\left(\frac{x}{L}\right)^{2}+\left(\frac{x}{L}\right)^{3}\right] L \varphi_{2} \\
& v(x)=h_{3} v_{1}+h_{4} \varphi_{1}+h_{5} v_{2}+h_{6} \varphi_{2}
\end{aligned}
$$

v_{1} - left-end deflection
v_{2} - right-end deflection
φ_{1} - left-end rotation
φ_{2} - right-end rotation

Beam element

Vector of nodal displacements
Matrix of interpolation functions

$$
\begin{aligned}
& \left.\left.\begin{array}{rl}
\mathbf{r} & =\left\{u_{1}, v_{1}, \varphi_{1}, u_{2}, v_{2}, \varphi_{2}\right\}^{T} \\
\mathbf{N} & =\left[\begin{array}{ccccc}
h_{1} & 0 & 0 & h_{2} & 0 \\
0 \\
0 & h_{3} & h_{4} & 0 & h_{5}
\end{array} h_{6}\right.
\end{array}\right]\right\} \mathbf{u}=\mathbf{N r} \\
& \left\{\begin{array}{l}
N_{x} \\
M_{z}
\end{array}\right\}=\left[\begin{array}{cc}
E A & 0 \\
0 & E I_{z}
\end{array}\right]\left\{\begin{array}{l}
\frac{d u}{d x} \\
\frac{d^{2} v}{d x^{2}}
\end{array}\right\} \\
& \rightarrow \quad \boldsymbol{\sigma}=\mathbf{D} \boldsymbol{\varepsilon} \\
& \rightarrow \quad \boldsymbol{\varepsilon}=\partial^{T} \mathbf{u}=\partial^{T} \mathbf{N} \mathbf{r}=\mathbf{B r} \\
& \mathbf{B}=\left[\begin{array}{cccccc}
\frac{d h_{1}}{d x} & 0 & 0 & \frac{d h_{2}}{d x} & 0 & 0 \\
0 & \frac{d^{2} h_{3}}{d x^{2}} & \frac{d^{2} h_{4}}{d x^{2}} & 0 & \frac{d^{2} h_{5}}{d x^{2}} & \frac{d^{2} h_{6}}{d x^{2}}
\end{array}\right]
\end{aligned}
$$

Strain - displacement relations

Beam element

Element stiffness matrix

Beam element

Element mass matrix

consistent formulation

$$
\mathbf{M}=\frac{m L}{420}\left[\begin{array}{cccccc}
140 & 0 & 0 & 70 & 0 & 0 \\
& 156 & 22 L & 0 & 54 & -13 L \\
& & 4 L^{2} & 0 & 13 L & -3 L^{2} \\
& & & 140 & 0 & 0 \\
& & & & 156 & -22 L \\
s y m & & & & & 4 L^{2}
\end{array}\right]
$$

Beam element

Element mass matrix
other possible approximation of deflections
$v(x)=\left(1-\frac{x}{L}\right) v_{1}+\frac{x}{L} v_{2}=h_{1} v_{1}+h_{2} v_{2}$

Element mass matrix

 diagonal mass matrix$$
\begin{array}{ll}
v(x)=h_{1} & v_{1}+h_{2} v_{2} \\
\text { where } & h_{1}=1 \text { for } x \leq l / 2 \\
& h_{1}=0 \text { for } x>l / 2 \\
& h_{2}=0 \text { for } x<l / 2 \\
& h_{2}=1 \text { for } x \geq l / 2
\end{array}
$$

$$
\mathbf{M}=\frac{m L}{420}\left[\begin{array}{cccccc}
140 & 0 & 0 & 70 & 0 & 0 \\
& 140 & 0 & 0 & 70 & 0 \\
& & 0 & 0 & 0 & 0 \\
& & & 140 & 0 & 0 \\
& & & & 140 & 0 \\
\text { sym } & & & & & 0
\end{array}\right]
$$

$$
\mathbf{M}=\frac{m L}{2}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & 0 & 0 & 0 \\
& & 0 & 0 & 0 & 0 \\
& & & 1 & 0 & 0 \\
& & & & 1 & 0 \\
s y m & & & & & 0
\end{array}\right]
$$

Comparison of Finite Element and exact solution

TABLE 17.10.1 NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM: CONSISTENT-MASS FINITE ELEMENT AND EXACT SOLUTIONS

	Number of Finite Elements, N_{e}					
Mode	1	2	3	4	5	Exact
1	3.53273	3.51772	3.51637	3.51613	3.51606	3.51602
2	34.8069	22.2215	22.1069	22.0602	22.0455	22.0345
3		75.1571	62.4659	62.1749	61.9188	61.6972
4		218.138	140.671	122.657	122.320	120.902
5			264.743	228.137	203.020	199.860
6			527.796	366.390	337.273	298.556
7				580.849	493.264	416.991
8				953.051	715.341	555.165
9					1016.20	713.079
10					1494.88	890.732

Source: R. R. Craig, Jr., Structural Dynamics, Wiley, New York, 1981.

TABLE 17.10.2 NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM: LUMPED-MASS FINITE ELEMENT AND EXACT SOLUTIONS

	Number of Finite Elements, N_{e}					
Mode	1	2	3	4	5	Exact
1	2.44949	3.15623	3.34568	3.41804	3.45266	3.51602
2		16.2580	18.8859	20.0904	20.7335	22.0345
3			47.0284	53.2017	55.9529	61.6972
4				92.7302	104.436	120.902
5					153.017	199.860

Source: R. R. Craig, Jr., Structural Dynamics, Wiley, New York, 1981.

Accuracy of FE analysis is improved by increasing number of DOFs

2. FREE VIBRATION

natural vibration frequencies and modes
$\mathbf{M} \ddot{\mathbf{r}}(t)+\mathbf{K r}(t)=\mathbf{0} \quad$ equation of motion
for undamped free vibration of MDOF system

$$
\mathbf{r}(t)=\phi_{n}\left(A_{n} \cos \omega_{n} t+B_{n} \sin \omega_{n} t\right) \quad \begin{aligned}
& \text { motions of a system in free } \\
& \text { vibrations are simple harmonic }
\end{aligned}
$$

$\ddot{\mathbf{r}}(t)=-\omega_{n}^{2} \mathbf{r}(t)$
$\left(\mathbf{K}-\omega_{n}^{2} \mathbf{M}\right) \phi_{n}=\mathbf{0}$
free vibration equation, eigenvalue equation

- natural mode ω_{n} - natural frequency ϕ_{n}
$\operatorname{det}\left(\mathbf{K}-\omega_{n}^{2} \mathbf{M}\right)=0$
nontrivial solution condition
frequency equation (polynomial of order N) not a practical method for larger systems

3. RAYLEIGH - RITZ METHOD

general technique for reducing the number of degrees of freedom

$$
\begin{aligned}
& \left(\mathbf{K}-\omega_{n}^{2} \mathbf{M}\right) \phi_{n}=\mathbf{0} \\
& (\mathbf{K}-\lambda \mathbf{M}) \phi=\mathbf{0} \\
& \phi^{T} \mathbf{K} \phi=\lambda \phi^{T} \mathbf{M} \phi
\end{aligned}
$$

$$
\lambda=\frac{\phi^{T} \mathbf{K} \phi}{\phi^{T} \mathbf{M} \phi} \quad \text { Rayleigh's quotient }
$$

Properties

1. When is an eigenvector ϕ_{n}, Rayleigh's quotient is equal to the corresponding eigфnvalue $\lambda=\omega_{n}^{2}$
2. Rayleigh's quotient is bounded between the smallest and largest eigenvalues

$$
\omega_{1}^{2} \leq \lambda_{1} \quad \omega_{2}^{2} \leq \lambda_{2} \quad \ldots . \quad \omega_{n}^{2} \leq \lambda_{n}
$$

Rayleigh - Ritz method

$$
\begin{array}{ll}
\mathbf{u}(t)=\boldsymbol{\Psi} \mathbf{z}(t) & \begin{array}{l}
\text { displacements or modal shapes are expressed as a } \\
\text { linear combination of shape vectors } \psi_{j}, j=1,2 \ldots J<N
\end{array} \\
& \begin{array}{l}
\text { Ritz vectors make up the columns of } N \times J \text { matrix } \Psi
\end{array} \\
\mathbf{z}=\boldsymbol{\Psi} \mathbf{z} & \text { is a vector of } J \text { generalized coordinates }
\end{array}
$$

substituting the Ritz transformation in a system of N equations of motion
$\mathbf{K} \ddot{\mathbf{u}}+\mathbf{C} \dot{\mathbf{u}}+\mathbf{K u}=\mathbf{s} p(t)$
we obtain a system of J equations in generalized coordinates

$$
\tilde{\mathbf{m}} \ddot{\mathbf{z}}+\tilde{\mathbf{c}} \dot{\mathbf{z}}+\tilde{\mathbf{k}} \mathbf{z}=\tilde{\mathbf{s}} p(t)
$$

$$
\tilde{\mathbf{m}}=\boldsymbol{\Psi}^{T} \mathbf{M} \boldsymbol{\Psi} \quad \tilde{\mathbf{c}}=\boldsymbol{\Psi}^{T} \mathbf{C} \boldsymbol{\Psi} \quad \tilde{\mathbf{k}}=\boldsymbol{\Psi}^{T} \mathbf{K} \boldsymbol{\Psi} \quad \tilde{\mathbf{s}}=\boldsymbol{\Psi}^{T} \mathbf{s}
$$

Ritz transformation has made it possible to reduce original set of N equations in the nodal displacement \mathbf{u} to a smaller set of J equations in the generalized coordinates \mathbf{z}

Rayleigh - Ritz method
substituting the Ritz transformation in a Rayleigh's quotient

$$
\lambda=\frac{\phi^{T} \mathbf{K} \phi}{\phi^{T} \mathbf{M} \phi}=\frac{\mathbf{z}^{T} \boldsymbol{\Psi}^{T} \mathbf{K} \boldsymbol{\Psi} \mathbf{z}}{\mathbf{z}^{T} \boldsymbol{\Psi}^{T} \mathbf{M} \boldsymbol{\Psi} \mathbf{z}}=\rho(z)
$$

and using Rayleigh's stationary condition

$$
\frac{\partial \rho(z)}{\partial z_{i}}=0 \quad i=1,2, \ldots J
$$

we obtain the reduced eigenvalue problem

$$
\begin{aligned}
& \tilde{\mathbf{k} \mathbf{z}=\rho \tilde{\mathbf{m}} \mathbf{Z}} \quad \Rightarrow \quad \rho, \mathbf{z} \quad \begin{array}{l}
\text { solution of all eigenvalues and eigenmodes } \\
\text { e.g. Jacobi's method of rotations }
\end{array} \\
& \tilde{\mathbf{m}}=\boldsymbol{\Psi}^{T} \mathbf{M} \boldsymbol{\Psi} \quad \tilde{\mathbf{k}}=\boldsymbol{\Psi}^{T} \mathbf{K} \boldsymbol{\Psi} \\
& \omega_{1}^{2} \leq \rho_{1} \omega_{2}^{2} \leq \rho_{2} \ldots . \quad \omega_{J}^{2} \leq \rho_{J} \quad \boldsymbol{\phi}_{i}=\boldsymbol{\psi}_{i} \mathbf{z}_{i}
\end{aligned}
$$

Rayleigh - Ritz method
Selection of Ritz vectors

GENERATION OF FORCE-DEPENDENT RITZ VECTORS

1. Determine the first vector, $\boldsymbol{\psi}_{1}$.
a. Determine \mathbf{y}_{1} by solving: $\mathbf{k y}_{1}=\mathbf{s}$.
b. Normalize $\mathbf{y}_{1}: \psi_{1}=\mathbf{y}_{1} \div\left(\mathbf{y}_{1}^{T} \mathbf{m y}_{1}\right)^{1 / 2}$.
2. Determine additional vectors, $\boldsymbol{\psi}_{n}, n=2,3, \ldots, J$.
a. Determine \mathbf{y}_{n} by solving: $\mathbf{k y}_{n}=\mathbf{m} \psi_{n-1}$.
b. Orthogonalize \mathbf{y}_{n} with respect to previous $\psi_{1}, \psi_{2}, \ldots, \boldsymbol{\psi}_{n-1}$ by repeating the following steps for $i=1,2, \ldots, n-1$:

- $a_{i n}=\boldsymbol{\psi}_{i}^{T} \mathbf{m y}_{n}$.
- $\hat{\psi}_{n}=\mathbf{y}_{n}-a_{i n} \psi_{i}$.
- $\mathbf{y}_{n}=\hat{\psi}_{n}$.
c. Normalize $\hat{\psi}_{n}: \boldsymbol{\psi}_{n}=\hat{\psi}_{n} \div\left(\hat{\psi}_{n}^{T} \mathbf{m} \hat{\psi}_{n}\right)^{1 / 2}$.

4. VECTOR ITERATION TECHNIQUES

Inverse iteration (Stodola-Vianello)
Algorithm to determine the lowest eigenvalue

$$
\begin{aligned}
& \mathbf{K} \overline{\mathbf{x}}_{k+1}=\mathbf{M} \mathbf{x}_{k} \Rightarrow \overline{\mathbf{x}}_{k+1}=\mathbf{K}^{-1} \mathbf{M} \mathbf{x}_{k} \\
& \mathbf{x}_{k+1}=\frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1 / 2}} \\
& \overline{\mathbf{x}}_{k+1} \Rightarrow \boldsymbol{\phi}_{1} \quad \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

Vector iteration techniques

Forward iteration (Stodola-Vianello)
Algorithm to determine the highest eigenvalue

$$
\begin{aligned}
& \mathbf{M} \overline{\mathbf{x}}_{k+1}=\mathbf{K} \mathbf{x}_{k} \Rightarrow \overline{\mathbf{x}}_{k+1}=\mathbf{M}^{-1} \mathbf{K} \mathbf{x}_{k} \\
& \mathbf{x}_{k+1}=\frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1 / 2}} \\
& \overline{\mathbf{x}}_{k+1} \Rightarrow \phi_{n} \quad \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

5. INVERSE VECTOR ITERATION METHOD

1. Starting vector $\mathbf{x}_{!}-$arbitrary choice

$$
\begin{aligned}
& \mathbf{R}_{1}=\mathbf{M} \mathbf{x}_{1} \\
& \mathbf{K} \overline{\mathbf{x}}_{2}=\mathbf{R}_{1}
\end{aligned}
$$

2. $\mathbf{K} \overline{\mathbf{x}}_{k+1}=\mathbf{M} \mathbf{x}_{k} \quad \Rightarrow \overline{\mathbf{x}}_{k+1}=\mathbf{K}^{-1} \mathbf{M} \mathbf{x}_{k}$
3. $\lambda^{(k+1)}=\frac{\overline{\mathbf{x}}_{k+1}^{T} \mathbf{K} \overline{\mathbf{x}}_{k+1}}{\overline{\mathbf{x}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{x}}_{k+1}} \quad$ (Rayleigh's quotient)
4. $\frac{\left|\lambda^{(k+1)}-\lambda^{(k)}\right|}{\lambda^{(k+1)}} \leq t o l$
5. If convergence criterion is not satisfied, normalize
$\mathbf{x}_{(k+1)}=\frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1 / 2}} \quad$ and go back to 2 . and set $k=k+1$
6. For the last iteration $(k+1)$, when convergence is satisfied

$$
\lambda_{1}=\omega_{1}^{2}=\lambda^{(k+1)} \quad \phi_{1}=\mathbf{x}_{(k+1)}=\frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1 / 2}}
$$

Gramm-Schmidt orthogonalisation
to progress to other than limiting eigenvalues (highest and lowest)
evaluation of ϕ_{n+1} correction of trial vector \mathbf{x}

$$
\tilde{\mathbf{x}}=\mathbf{x}-\sum_{j=1}^{n} \frac{\boldsymbol{\phi}_{j}^{T} \mathbf{M} \mathbf{x}}{\boldsymbol{\phi}_{j}^{T} \mathbf{M} \phi_{j}} \phi_{j}
$$

Inverse vector iteration method
Vector iteration with shift μ
the shifting concept enables computation of any eigenpair
(a)

b)

(c)

$$
\lambda=\breve{\lambda}+\mu \quad \breve{\mathbf{K}} \phi=\check{\lambda} \mathbf{M} \phi \quad \breve{\mathbf{K}}=\mathbf{K}-\mu \mathbf{M}
$$

eigenvectors of the two eigenvalue problems are the same inverse vector iteration converge to the eigenvalue closer to the shifted origin, e.g. to $\bar{\lambda}_{3}$, see (c)

Inverse vector iteration method

Example - 3DOF frame, $1^{\text {st }}$ natural frequency

$$
\left.\begin{array}{rl}
\mathbf{K}^{-1}=\boldsymbol{\delta}=\frac{1}{6 k}\left[\begin{array}{ccc}
2 & 2 & 2 \\
2 & 5 & 5 \\
2 & 5 & 8
\end{array}\right] \\
\mathbf{M} & =\left[\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right]
\end{array}\right\} \boldsymbol{\delta} \mathbf{M}=\frac{m}{6 k}\left[\begin{array}{ccc}
2 & 2 & 2 \\
2 & 5 & 5 \\
2 & 5 & 8
\end{array}\right] .
$$

$$
\mathbf{K} \overline{\mathbf{x}}_{k+1}=\mathbf{M} \mathbf{x}_{k} \Rightarrow \quad \overline{\mathbf{x}}_{k+1}=\mathbf{K}^{-1} \mathbf{M} \mathbf{x}_{k}=\boldsymbol{\delta} \mathbf{M} \mathbf{x}_{k} \quad \mathbf{x}_{0}=\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\} \begin{aligned}
& \text { starting } \\
& \text { vector }
\end{aligned}
$$

Inverse vector iteration method

$$
\begin{aligned}
& \begin{array}{l}
1^{\text {st iteration }} \\
\overline{\mathbf{x}}_{1}=\boldsymbol{\delta} \mathbf{M} \mathbf{x}_{0}=\frac{m}{6 k}\left\{\begin{array}{c}
6 \\
12 \\
15
\end{array}\right\} \quad \rho^{(1)}=\frac{\overline{\mathbf{x}}_{1}^{T} \mathbf{M} \mathbf{x}_{0}}{\overline{\mathbf{x}}_{1}^{T} \mathbf{M} \overline{\mathbf{x}}_{1}}=0,489 \frac{\mathrm{k}}{m} \quad \mathbf{x}_{1}=\left\{\begin{array}{c}
\text { normalization } \\
u_{1}=1 \\
2 \\
2,5
\end{array}\right\},{ }_{1}^{1}
\end{array} \\
& \overline{\mathbf{x}}_{2}=\boldsymbol{\delta} \mathbf{M} \mathbf{x}_{1}=\frac{m}{6 k}\left\{\begin{array}{c}
11 \\
24,5 \\
32
\end{array}\right\} \quad \rho^{(2)}=\frac{\overline{\mathbf{x}}_{2}^{T} \mathbf{M} \mathbf{x}_{1}}{\overline{\mathbf{x}}_{2}^{T} \mathbf{M} \overline{\mathbf{x}}_{2}}=0,481 \frac{k}{m} \quad \mathbf{x}_{2}=\left\{\begin{array}{c}
1 \\
2,23 \\
2,91
\end{array}\right\} \\
& \begin{aligned}
\text { 3 }^{\text {rd iteration }} \\
\overline{\mathbf{x}}_{3}=\boldsymbol{\delta} \mathbf{M} \mathbf{x}_{2}=\frac{m}{6 k}\left\{\begin{array}{l}
12,28 \\
27,70 \\
36,43
\end{array}\right\} \quad \rho^{(3)}=\frac{\overline{\mathbf{x}}_{3}^{T} \mathbf{M} \mathbf{x}_{2}}{\overline{\mathbf{x}}_{3}^{T} \mathbf{M} \overline{\mathbf{x}}_{3}}=0,481 \frac{k}{m} \quad \mathbf{x}_{3}=\left\{\begin{array}{c}
1 \\
2,26 \\
2,97
\end{array}\right\} \\
\longrightarrow \omega_{1} \square \sqrt{\rho^{(3)}}=0,694 \sqrt{\frac{k}{m}} \quad \boldsymbol{\phi}_{1} \cong \mathbf{x}_{3}
\end{aligned}
\end{aligned}
$$

Appendix - flexibility matrix

6. SUBSPACE ITERATION METHOD

efficient method for eigensolution of large systems when only the lower modes are of interest
similar to inverse iteration method - iteration is performed simultaneously on a number of trial vectors m
m - smaller of $2 p$ and $p+8, p$ is the number of modes to be determined
(p is usually much less then N, number of DOF)

1. Staring vectors \mathbf{X}_{1}

$$
\begin{aligned}
& \mathbf{R}_{1}=\mathbf{M} \mathbf{X}_{1} \\
& \mathbf{K} \overline{\mathbf{X}}_{2}=\mathbf{R}_{1}
\end{aligned}
$$

2. Subspace iteration
a) $\mathbf{K} \overline{\mathbf{X}}_{k+1}=\mathbf{M} \mathbf{X}_{k}$
b) Ritz transformation

$$
\tilde{\mathbf{K}}_{k+1}=\overline{\mathbf{X}}_{k+1}^{T} \mathbf{K} \overline{\mathbf{X}}_{k+1} \quad \tilde{\mathbf{M}}_{k+1}=\overline{\mathbf{X}}_{k+1}^{T} \mathbf{M} \overline{\mathbf{X}}_{k+1}
$$

Subspace iteration method
2. Subspace iteration cont.
c) Reduced eigenvalue problem (m eigenvalues)

$$
\tilde{\mathbf{K}}_{k+1} \mathbf{Q}_{k+1}=\boldsymbol{\Omega}_{k+1}^{2} \tilde{\mathbf{M}}_{k+1} \mathbf{Q}_{k+1}
$$

d) New vectors

$$
\mathbf{X}_{k+1}=\overline{\mathbf{X}}_{k+1} \mathbf{Q}_{k+1}
$$

e) Go back to 2 a)
3. Sturm sequence check
verification that the required eigenvalues and vectors have been calculated - i.e. first p eigenpairs

Subspace iteration method - combines vector iteration method with the transformation method

7. EXAMPLES

Simple frame

$\mathrm{EI}=32000 \mathrm{kNm}^{2}$
$\mu=252 \mathrm{kgm}^{-1}$

	exact solution	elem	6 elem	12 elem
$f_{1}[\mathrm{~Hz}]$	7,270	7,282	7,270	7,270
$f_{2}[\mathrm{~Hz}]$	28,693	34,285	28,845	28,711
$f_{3}[\mathrm{~Hz}]$	46,799	74,084	47,084	46,854

1. shape of vibration

2. shape of vibration

Examples

$\mathrm{EI}=32000 \mathrm{kNm}{ }^{2}$
$\mu=252 \mathrm{kgm}^{-1}$

	exact solution	elem	6 elem
$f_{1}[\mathrm{~Hz}]$	28,662	34,285	28,845
$f_{2}[\mathrm{~Hz}]$	41,863	65,623	42,393
$f_{3}[\mathrm{~Hz}]$	50,653	-	51,474

1. shape of vibration

Recommendation:

it is good to divide beams into (at least) 2 elements in the dynamic FE analysis

Examples - 3-D frame (turbomachinery frame foundation)

Examples - 3-D frame (turbo-machinery frame foundation)

Examples - 3-D frame (turbo-machinery frame foundation)

Examples - 3-D frame + plate + elastic foundation

Examples - cable-stayed bridge

1.Vlastní tvar - vlastní frekvence $f_{\mathbf{1}}=\mathbf{0 , 7 4 4} \mathbf{H z}$

Examples - cable-stayed bridge

3.Vlastní tvar - vlastní frekvence $f_{3}=1,209 \mathrm{~Hz}$

4.Vlastní tvar - vlastní frekvence $\mathbf{f}_{\mathbf{4}}=\mathbf{1 , 5 4 9 ~ H z}$

5.Vlastní tvar - vlastní frekvence $\mathrm{f}_{5}=\mathbf{1 , 6 8 5} \mathbf{~ H z}$

6.Vlastní tvar - vlastní frekvence $f_{6}=\mathbf{1 , 9 2 1 ~ H z}$

Examples - cable-stayed bridge

7.Vlastní tvar - vlastní frekvence $f_{7}=2,153 \mathbf{H z}$

8. Vlastní tvar - vlastní frekvence $f_{8}=\mathbf{2 , 1 8 6 ~ H z}$

9.Vlastní tvar - vlastní frekvence $f_{9}=2,522 \mathbf{H z}$

10.Vlastní tvar - vlastní frekvence $f_{10}=2,763 \mathrm{~Hz}$

