1E5 Advanced design of glass structures

Martina Eliášová

List of lessons

- 2) Glass as a material for load bearing structures
- 3) Design of laminated plates
- 4) Design of glass beams
- 5) Design of compressed members
- 6) Hybrid load-bearing members
- 7) Curved glass members
- 8) Design of bolted connection
- 9) Design of glued connection
- 10) Glass facades
- 11) Glass roofs
- 12) Examples of glass structures

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Objectives of the lecture

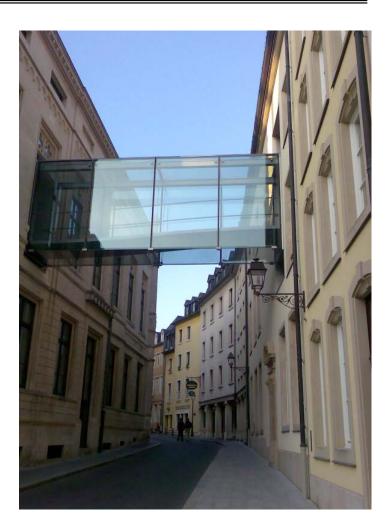
- Introduction to glass structures
- Historical review
- Production glass products, edge quality
- Material and mechanical properties
- Testing of glass elements

Introduction

Historical review

Chemical composition

Production


Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Introduction

- Load bearing elements from glass
- Purpose
- Architectural aspects of new structures
- Design of glass structures

Introduction

Historical review

Chemical composition

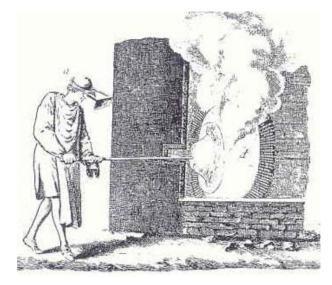
Production

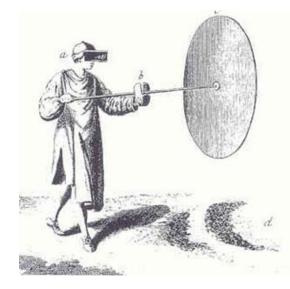
•

•

•

•


Glass products, edge quality


> Material and mechanical properties

Testing of glass elements

Historical review

- The oldest finds of glass in Egypt 10 000 BC
- Glass blower's pipe finding around turn of the era
 - Flat glass crown process, cylindrical process
 - 1871 Pilkington machine for automated production
 - Beginning of the 20th century: development of various drawn flat sheet processes
 - Mid-20th century: Pilkington developed float glass process

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Chemical composition

Glass is isotropic, inorganic, visco-elastic material without lattice structure, solid at room temperature, liquid above transition zone ~580°C.

Typical composition:

- Silica SiO_2 70 74%
- Lime CaO 5-12%
- soda Na₂O 12 16%
- other chemical elements with influence to: spectral transmittance, thermal properties, tensile strength, fracture toughness, colour, etc.

Glass colours produced by the addition of metal oxides

- green iron or chromium oxide
- red copper oxide or gold oxide
- blue cobalt oxide

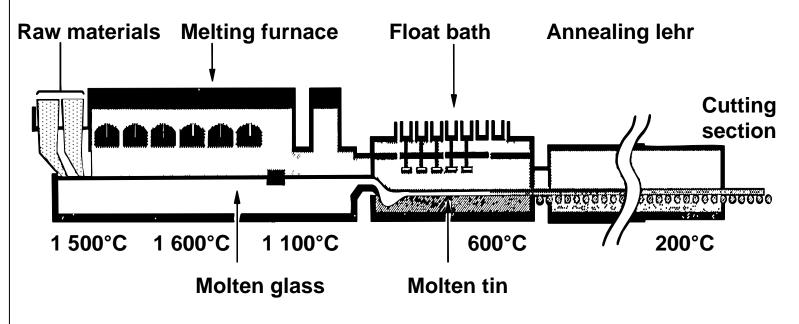
Introduction

Historical review

Chemical composition

Production

Glass products, edge quality


> Material and mechanical properties

Testing of glass elements

Production

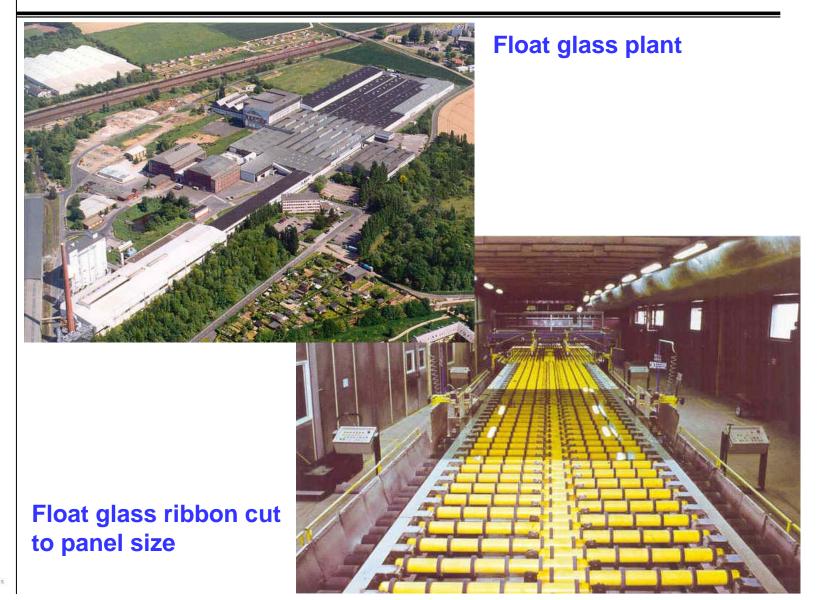
Float glass process

- silica sand, soda ash, limestone and salt cake with cullet
- controlled heating permits glass to flow
- flat ribbon of uniform thickness, brilliant and flat parallel surfaces

Introduction

Historical review

Chemical composition


Production

Glass products, edge quality

Material and mechanical properties

Testing of glass elements

Production

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Glass products, edge quality

- <u>flat glass</u> t = 3, 4, 5, 6, 7, 8, 10, 12, 15, 19, 25 mm, max. size 6,0 x 3,2 m
- <u>channel glass C, U</u> length up to 6,0 m
 - circular tube thickness from 0,7 to 10,0 mm, diameters d = 3 to 325 mm
 - <u>glass block</u> hollow - (115 x 115 x 80 mm - 300 x 300 x 95 mm) solid - (120 x 120 x 40 mm - 200 x 200 x 50 mm)
- <u>curved glass</u>

radius R = 300 mm - ∞ depend on the thickness, bends in one or two planes

Introduction

Historical review

Chemical composition

Production

۲

Glass products, edge quality

Material and mechanical properties

Testing of glass elements

Glass products, edge quality

Edge quality

- CUT unfinished sides of glass with sharp edges;
- ARRISED the sharp cut edges have been broken off or bevelled with a grinding tool
- GROUND to required dimensions, with blank spots
- FINE GROUND edge is fully ground over its full surfaces, without blank spots
- POLISHED the fine ground edges are finely polished

cut	
$2 \text{ mm} \\ \ddagger 45^{\circ} \pm 2^{\circ} \\ \text{mitre}$	
bevel	
round	
half-round	

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Material and mechanical properties

High durability

Resistance to:

- water percolation
- corrosion
- salt water
- carbonated water
- strong acids
- organic solvents
- ultra-violet radiation

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

Material and mechanical properties

Testing of glass elements

Material and mechanical properties

Glass property	Value	Unit
Density ρ	2500	kg/m³
Young's modulus of elasticity E	70 000	МРа
Shear modulus G	30 000	MPa
Poisson's ratio v	0,23	-
Coefficient of thermal expansion α_T	7,7 - 8,8 x 10 ⁻⁶	1/K
Thermal conductivity λ	1,0	W/(mK)
Emissivity <i>ɛ</i>	0,89	-
Compressive strength	up to 1 000	MPa
Tensile strength	10 - 100	MPa

Production Stress σ Stress σ Stress σ Glass products, ultimate edge quality strength f. Material and yield mechanical strength f properties design strength f_d Testing of glass ultimate elements ultimate strength f_µ strength f_k design strength f_d design strength f_d Strain ɛ Strain ɛ Strain ɛ V ¥ elastic elastic elastic plastic plastic range range range range range TIMBER **GLASS** STEEL

Chemical composition

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Material and mechanical properties

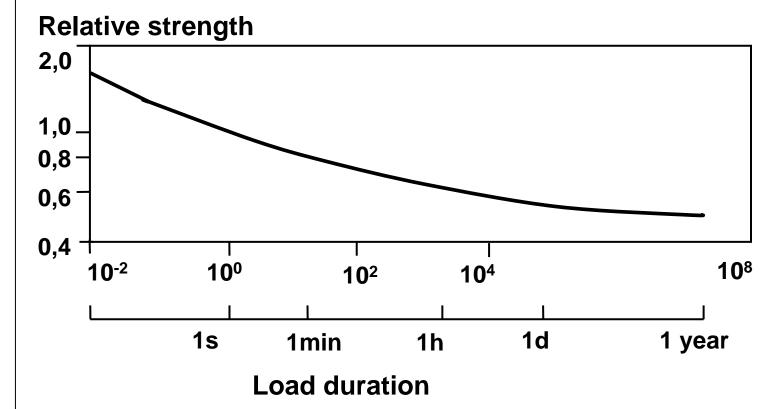
Strength of glass depends on:

- · surface condition and edge quality
- load duration
- environmental condition, especially humidity
- stress distribution on the surface
- · size of the stressed area
- damage of glass surface flaws and cracks

Introduction

Historical review

Chemical composition


Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Material and mechanical properties

Relationship between time to failure and applied stress (Sedlacek)

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Material and mechanical properties

Relationship between time to failure and applied stress

$\sigma^n T = cons tan t$

 σ - stress

T - duration of stress

n - constant

environment	constant <i>n</i>
water at 25°C – recommended for design purposes	16,0
air with 50% relative humidity at 25°C	18,1
air with 10% relative humidity at 25°C	27,0
vacuum	70,0
melting snow at 2°C	16,0

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Material and mechanical properties

FRACTURE MECHANICS – growth of crack (Griffith's theory)

Critical combination of stress and crack length for fast fracture is a material constant

$$\sigma_{\sqrt{\pi a}} = \sqrt{EG_c}$$

- a half of the crack length,
- E Young's modulus of elasticity
- G_c toughness of the glass [kJ/m²], (critical elastic energy release rate)
- critical length of crack x critical stress
- crack grows slowly when stress $\sigma < \sigma_{cr}$ until critical length

Introduction

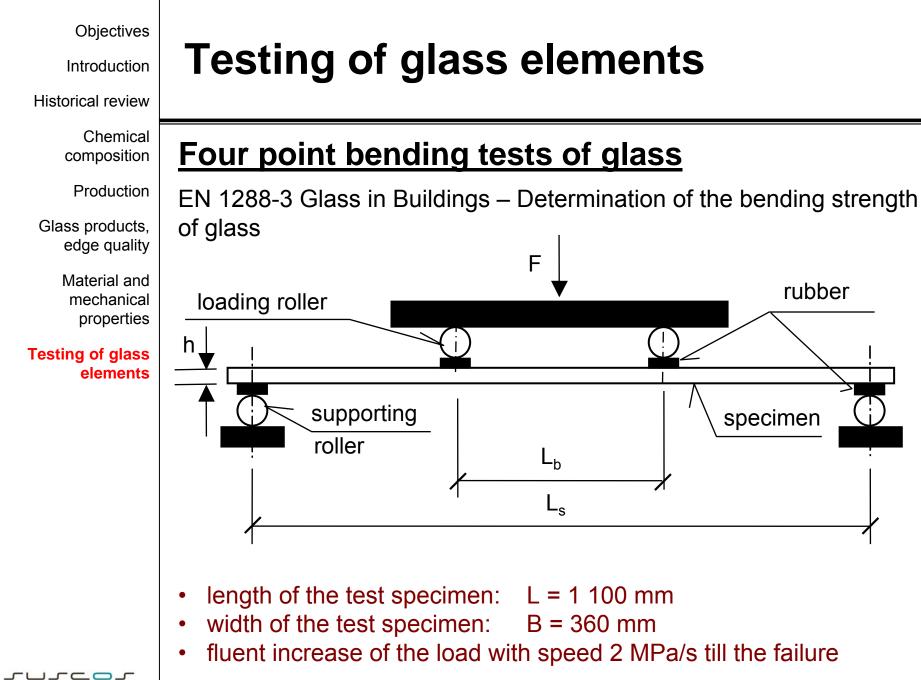
Historical review

Chemical composition

Production

Glass products, edge quality

> Material and mechanical properties


Testing of glass elements

Material and mechanical properties

Irregularities and defects in glass

- manufacturing in material (vents, sulphate scab, inclusions)
- mechanical processing sawing, cutting, drilling, edge and surface grinding
- environment cleaning (new micro cracks and scratches are generated)
- glass has ability to reverse damage in unstressed state (i.e. heal the micro cracks)

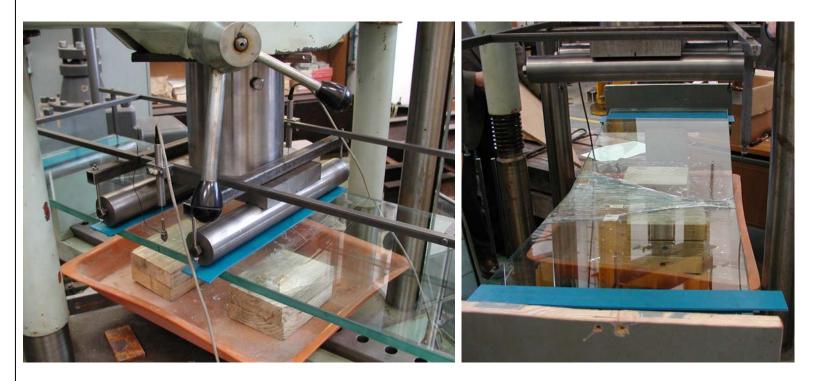
SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Introduction

Historical review

Chemical composition

Production


Glass products, edge quality

> Material and mechanical properties

Testing of glass elements

Testing of glass elements

Four point bending test of glass

- Test set-up
- Typical failure of float glass

Introduction

Historical review

Chemical composition

Production

Glass products, edge quality

Material and mechanical properties

Testing of glass elements

Testing of glass elements

- impact resistance of glass to resist dynamic human impact
- 50kg pendulum, dropping height, glass breakage

Thank you for your kind attention

