

Connection design by Component Based Finite Element Method

Lecture 1
Beam to Column Moment Connection

List of lectures

- 1) Beam to column moment connection
- 2) Joint of hollow to open section
- 3) Column base
- 4) Seismically qualified joints

Aims and objectives

- Provide information on joint modelling
- Introduce principles of CBFEM
- Provide an online training to students and engineers
- Illustrate differences between research and design oriented FEM
- Show the process of Validation & Verification
- Offer list of references relevant to the topic

Beam to column moment connection

František Wald, Lukáš Gödrich, Marta Kuříková, Lubomír Šabatka, Jaromír Kabeláč, Drahoš Kojala

Tutorial

- This lecture describes principles
 of FEA modelling
 of beam to column moment connection.
- Survey of both simple and FEM analyses and modelling are shown.
- Finally Validation, Verification and Benchmark case is presented.

Material was prepared under the R&D project MERLION II supported by Technology Agency of the Czech Republic, project No TH02020301.

Outline of the lecture

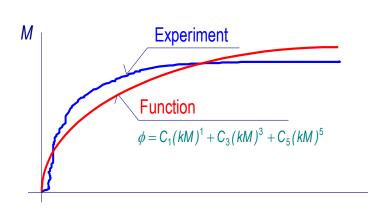
Introduction to design

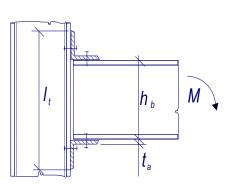
- Design models
- Global analyses
- Classification
- Component method
- Interaction of internal forces
- Assessment I

Component Based Finite Element Method

- General
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Introduction to design


Lecture 1


Beam to column moment connection

Past and Present design models

For joint design are available models:

- Experimental history and contemporary design
- Curve fitting currently hollow section joints design
- Analytical models
 - Component Method (CM)
- Research oriented finite element method
- Design oriented finite element method
 - Component based FE Method (CBFEM)

Design models
Global analyse
Classification
Component meth.
Interaction

Assessment I

CBFEM

General
Validation
Verification
Benchmark case

Assessment II

Summary

An example of

fire design

component model for

(Block et al 2005)

Joints characteristics in bending

- Major characteristics for joint in bending are
 - \circ Initial stiffness $S_{j,ini}$
 - Small influence to distribution of internal forces
 - \circ Design resistance $M_{j,Rd}$
 - Direct influence to resistance
 - $_{ extsf{O}}$ Deformation capacity $arphi_{ extsf{Cd}}$
 - Influence to plastic and seismic design only

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

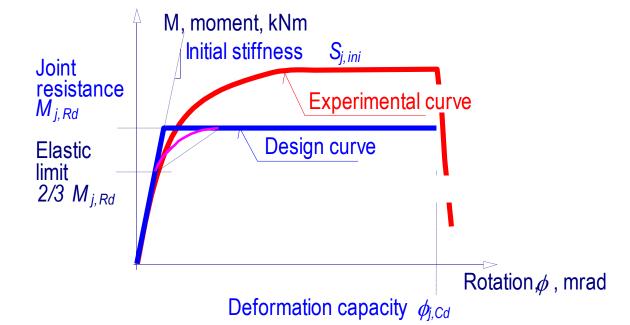
Assessment I

CBFEM

General

Validation

Verification


Benchmark case

Assessment II

Design model and experimental behaviour

- The design model reflects the need of designers to safe prediction of joint behaviour
- As structural elements are in joint designed for its material yielding f_y or its ultimate stress f_u
- The experimentally reached resistance is never the asked design resistance

Introduction

Design models
Global analyse
Classification
Component meth.
Interaction
Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Joints deformability/stiffness

Joint deforms due to

Shear force

- No influence to global distribution of internal forces
- Is closed during erection

Normal force

- No influence to global distribution of internal forces
- Exception in space structures of course

Bending moment

- Significant influence to distribution of internal forces
- The highest is in rectangular closed frames

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

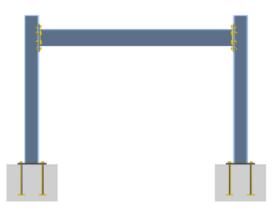
Validation

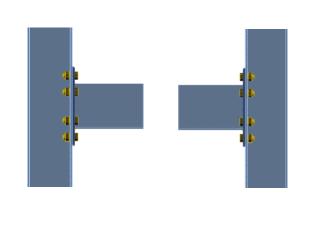
Verification

Benchmark case

Assessment II

Joints in global analyses


Example of frame with its joints


Flexible column web

panel and

semi-rigid

connections

If part of joint is flexible is in global analyses modelled as

CBFEM

General

Validation

Interaction

Assessment I

Introduction

Design models

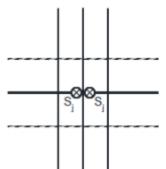
Global analyse
Classification

Component meth.

Verification

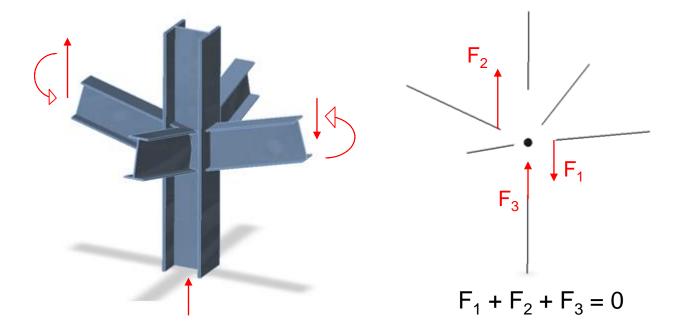
Benchmark case

Assessment II


Summary


Stiff column web panel and semi-rigid or pinned connections

Stiff column web panel and semi-rigid or pinned connections



Stiff column web panel and rigid connections

Physical and theoretical joint

- In global analyses with 1D members are forces transferred to beam ends.
- Forces are kept and moments are modified by action of forces on actual arms.
- Theoretical joint should be in equilibrium, see example right below.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Classification

 For global analyses of steel frames are joints classified to simplify the modelling.
 (Preferable as pinned and rigid joints.)

- According to Ch. 5 in EN1993-1-8:2006 are joints classified based on
 - Best engineering practice
 - Simplified assumption of frame behaviour
 - Actual influence of particular joint to frame design.
 (This implicates recalculation.)

Introduction

Design models Global analyse

Classification

Component meth.

Interaction

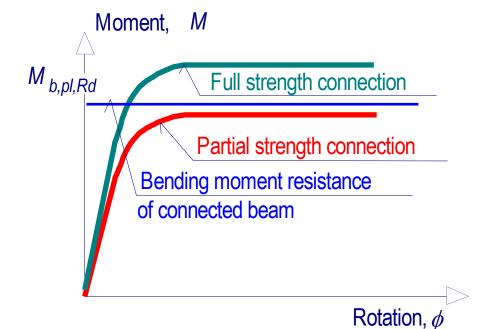
Assessment I

CBFEM

General

Validation

Verification


Benchmark case

Assessment II

Classification based on resistance

- Bending moment resistance of connection to bending moment resistance of connected beam is compared in connections loaded in bending.
 - Full strength joints/connections $M_{j,Rd} > M_{b,pl,Rd}$
 - \circ Partial strength joints/connections $M_{\rm j,Rd} < M_{\rm b,pl,Rd}$

Introduction

Design models
Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Classification based on rotational capacity

- Rotational capacity of connection to rotational capacity of connected beam is compared in connections loaded in bending.
 - Ductile connection
 - Semi-ductile connection
 - Brittle connection

Moment, M Elastic rotation of connected beam Ductile connection (Class 1) Semi-ductile connection (Class 2) Brittle connection (Class 3)

Rotation, ϕ

16

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Classification based on stiffness

- Bending stiffness of connection to bending stiffness of connected beam is compared in connections loaded in bending.
 - Rigid joint

 $S_{i,ini} \ge 25 E l_b / L_b$ (for frames without bracing)

Semi-rigid joint $S_{j,ini,rigid} \leq S_{j,ini} \geq S_{j,ini,pinned}$

Nominally pinned joint

 $S_{i,ini} \leq 0.5 E l_b / L_b$

Introduction

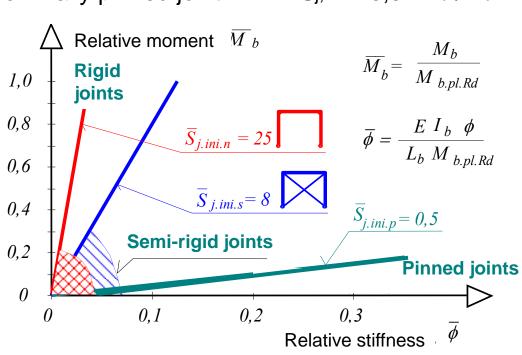
Design models Global analyse

Classification

Interaction

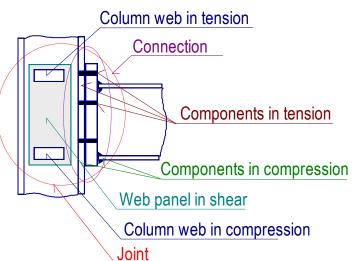
Component meth.

General


Validation

Verification

Benchmark case


Assessment II

Component Method

- Component method is analytical procedure to evaluate joint resistance and stiffness.
 It consist of steps:
 - Decomposition of joint to individual components based on assumed distribution of internal forces.
 - Component description in terms of deformational stiffness and resistance.
 - Joint behaviour assembly from the behaviour of its components based on assumed distribution of internal forces.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

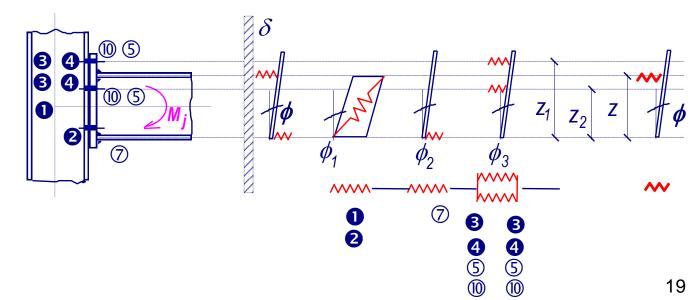
Assessment I

CBFEM

General

Validation

Verification


Benchmark case

Assessment II

1) Decomposition of joint

- In simplified procedures are joints design in one plane
- Joint is decomposet to component based on best engineering practice
- Example below is decomposition of the beam to column joint of open I/H sections with one end plate bolted connection is
 - To components in column (1234), end plate connection (510), and connected beam (7)
 - o Finally to rigid bodyand one spring

Introduction

Design models
Global analyse
Classification

Component meth.
Interaction
Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

2) Component description

 The structural properties of basic joint components are described in Chapter 6 of EN 1993-1-8 for some basic components, eg. for

- Column web panel in shear
- Column web in transverse compression
- Column web in transverse tension
- Column flange in bending
- End-plate in bending
- Flange cleat in bending
- For composite joints are in EN1994-1-1:2005
 - For another joints in literature

Design models

Global analyse

Classification

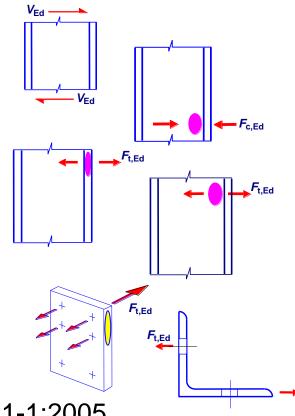
Component meth.

Interaction

Assessment I

CBFEM

General


Validation

Verification

Benchmark case

Assessment II

3) Joint assembly

- o Joint are assembled using the assumed lever arms of components z_x assumed according to best engineering practice
- E.g. for bolted connection with one bolt row may be guess simplified assembly
 - F_{c,Rd} is compression force recon in the middle of bottom flange
 - \circ $F_{t,Rd}$ is tensile force expected in the middle of bolt
 - z is estimated lever arm

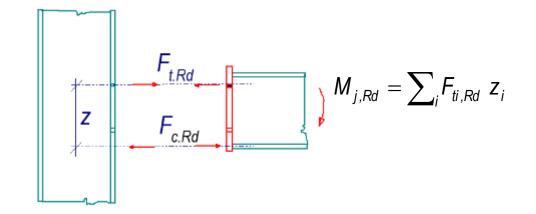
CTU CZECH TECHNICAL UNIVERSITY IN PRAGUE

Introduction

Design models
Global analyse
Classification

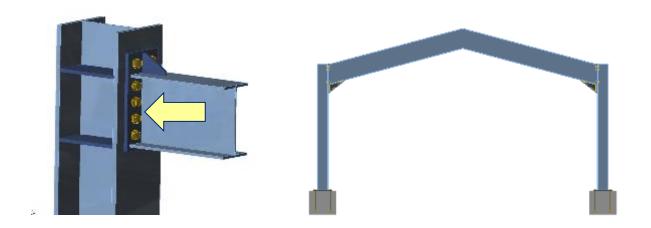
Component meth.
Interaction
Assessment I

CBFEM


General

Validation

Verification


Benchmark case

Assessment II

Interaction of bending moment and normal force

- Many joints are exposed to interaction of bending moment and normal forces,
- One example is simple portal frame, where the bolted eaves moment connection transmits the normal force based on the rafter inclination.
 - The Normal force may be neglectabe but for greater inclination is for connection significant.

Introduction

Design models Global analyse

Classification

Component meth.

Interaction

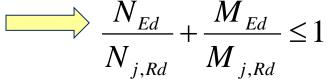
Assessment I

CBFEM

General

Validation

Verification


Benchmark case

Assessment II

Simplified prediction of interaction of bending moment and normal force

- In EN 1993-1-8:2005 is recommended:
 - Obesign moment resistance of joint $M_{\rm j,Rd}$ does not take account of any axial force $N_{\rm Ed}$ in the connected member. Axial force in the connected member $N_{\rm Ed}$ should not exceed 5% of design plastic resistance of connected element $N_{\rm pl,Rd}$.
 - Otherwise should be considered by:
 - Linear interaction

- Component method
- Interaction ratio is calculated to the vectors between points of the interaction curve.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Interaction

of bending moment and normal force on beam to column joint with end plate

- The significant points are marked.
- The lines represents the limit of safe design by simple linear interaction and by component method.

Introduction

Design models

Global analyse

Classification

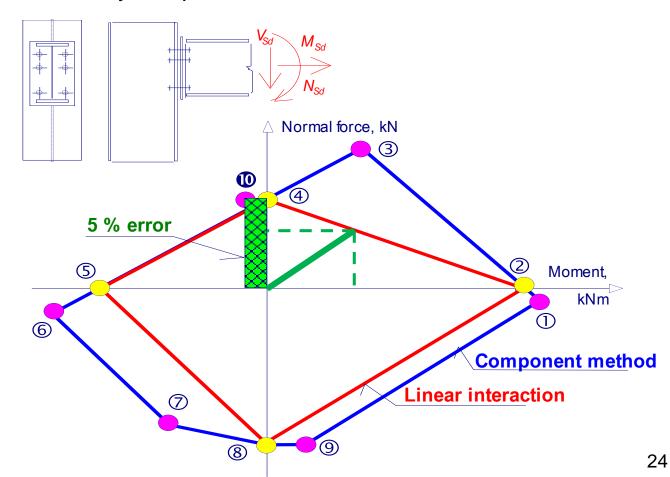
Component meth.

Interaction

Assessment I

CBFEM

General


Validation

Verification

Benchmark case

Assessment II

Assessment I

- Describe the influence to quality of design of the three major characteristics of joint
- Principles of joint classification according to What Ch. 5 in EN1993-1-8:2006
- What's influence of joint deformation due to shear force,
 Normal force and bending moment
- Draw the four possible representation of joints in global analyses.
- Describe the three major steps of Component method.
- How is in Component method predicted the lever arm of internal forces?
- Describe the three major steps of Component method.
- How to predict in a simple way interaction of bending moment and normal force?

Introduction

Design models
Global analyse
Classification
Component meth.

Assessment I

Interaction

CBFEM

General
Validation
Verification
Benchmark case
Assessment II

Component Based Finite Element Method

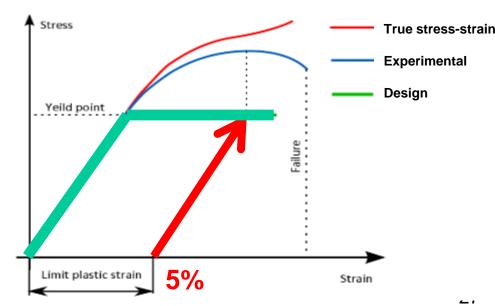
Lecture 1

Beam to column moment connection

Material

- Bilinear ideal elastic plastic diagram is used in design oriented models as CBFEM according to Ch. 7 in EN 1993-1-5:2006 and the slope of plastic branch is due to numerical stability E/1000.
- Plastic strain in plates is limited by 5%.
- In research oriented models is calculated the true stress-strain diagram from the material properties obtained in tensile tests, which is takin into account the necking of the coupon during its yielding before rupture.

Introduction


Design models
Global analyse
Classification
Component meth.
Interaction

CBFEM

Validation
Verification
Benchmark case
Assessment II

Assessment I

Plate

- Four node quadrangle shell elements are applied with six degrees of freedom, i.e. three translations and three rotations, in every node.
- End plates, element profiles, slender stiffener, T-stubs are modelled as plates connected in joint by constrains and the connection check is independent on the element size.
- Example of T-stub shows the influence of mesh size on the T-stub resistance.
 - Dashed lines are representing 5%, 10% and 15% difference.

Benchmark case

Introduction

Interaction

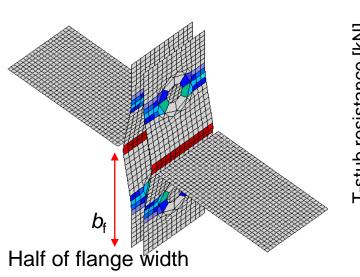
CBFEM

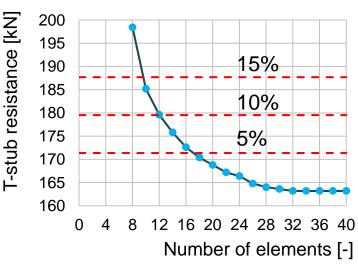
General

Validation

Verification

Assessment II

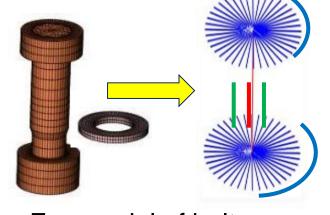

Summary


Assessment I

Design models

Global analyse Classification

Component meth.



Bolt

- of bolt holes is used in CBFEM, but is used also in research oriented models (Bursi, Jaspart, 1998).
- Nonlinear springs are connected for
 - **Tension** in contact of
 - bolt shank and bolt head
 - Shear in contact between
 - plate and bolt head
 - bolt shank and plate

- Fan model with interpolation constrains to edges

Fan model of bolt with constrains

Introduction

Design models Global analyse Classification Component meth. Interaction

CBFEM

General Validation Verification Benchmark case Assessment II

Assessment I

Working diagram of spring model for Component bolt in tension

Introduction

Design models

Global analyse

Classification

Component meth.

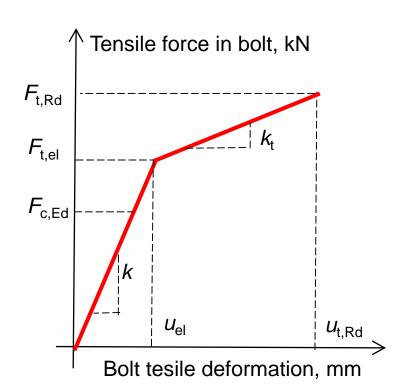
Interaction

Assessment I

CBFEM

General

Validation


Verification

Benchmark case

Assessment II

Summary

- $_{\circ}$ For bolt's resistance is expected maximum allowed plastic strain $\varepsilon_{\rm mpb}$ as 25 % of elongation to fracture of bolt according to EN ISO 898-1:2013, the values are summarised in Table below.
- The stiffness in tension is calculated as $k = E A_s/L_b$, where A_s is tensile area of bolt and L_b is the distance between the centers of the head and the bolt nut.

Maximum allowed plastic strains for bolts $\boldsymbol{\varepsilon}_{\mathsf{t},\mathsf{Rd}}$

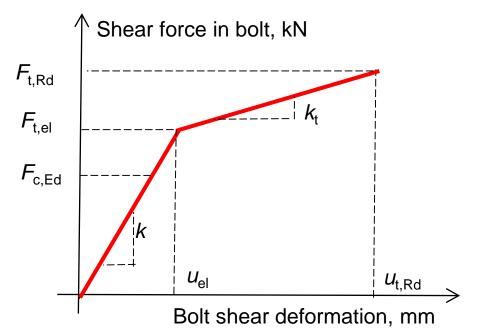
Bolt grade 4.8 5.6 5.8 6.8 8.8 10.9

 $arepsilon_{\mathsf{mpb}}$ %

3,5

5,0

2,5


2,0

,0 2,3

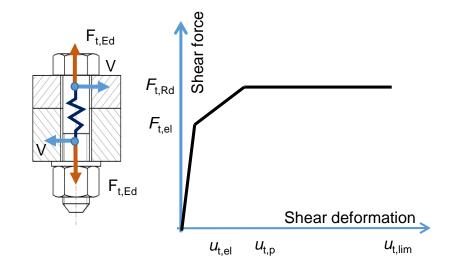
Working diagram of spring model for Component bolt in shear

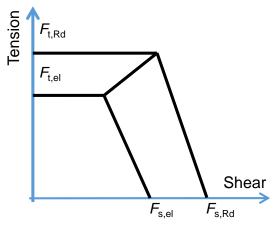
- Bolt in shear is simulated by bilinear diagram with its initial linear part and nonlinear one, which may be simplified as second linear one.
- Values are obtained by experiments and summarised in design standards.
- The values in Ch. 6 EN1993-1-8:2006 represents well the bearing of plate and bolt and shearing of the bolts shaft.

Introduction

Design models
Global analyse
Classification
Component meth.
Interaction
Assessment I

CBFEM


Validation
Verification
Benchmark case
Assessment II



Bolt loaded in tension and shear

- The bolt loaded to tensile resistance $F_{t,Rd}$ has still significant shear residual resistance $F_{s,res,Rd}$.
- The interaction is described by linear/nonlinear relation, which is in CBFEM simplified for initial and second part of the curve, see Figs below

$$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1.4 \ F_{t,Rd}} \le 1.0$$

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Bolts

 Interaction diagram for deformation of the bolt loaded in shear and tension, (Wald et al. 2016)

Introduction

Design models

Global analyse

Classification

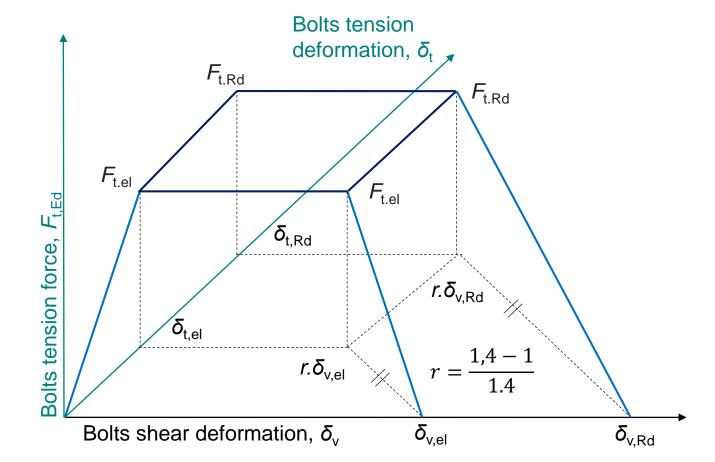
Component meth.

Interaction

Assessment I

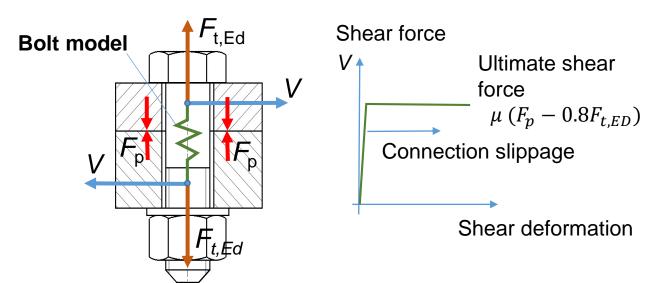
CBFEM

General


Validation

Verification

Benchmark case

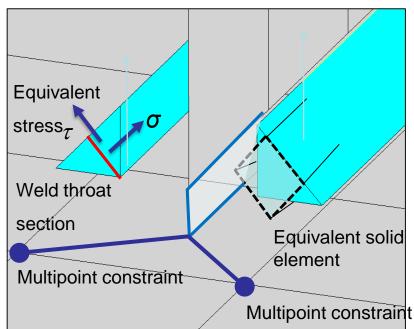

Assessment II

Slip resistant bolt

- In the preloaded slip resistant bolt is transferred the shear force by friction.
- As the friction force is reached slip resistance the shear force is transferred by bearing of the plate and shearing of bolt as regular non preloaded bolt.
- Bolt is preloaded to 70% of its strength.

Introduction

Design models
Global analyse
Classification
Component meth.
Interaction
Assessment I


CBFEM

Validation
Verification
Benchmark case
Assessment II

Welds

- Filled weld is modelled by equivalent solid elastoplastic element, which is added between plates to express the weld behaviour, see Fig. below.
- The element respects the weld throat thickness, position, and orientation to assure good representation of weld deformation stiffness, resistance and deformation capacity.
- The plastic strain in weld is limited to 5%.

Wald et al. (2016)

Introduction

Design models
Global analyse
Classification
Component meth.
Interaction
Assessment I

CBFEM

Validation
Verification
Benchmark case
Assessment II

Verification & Validation

 The need and position of Verification & Validation in prediction of the reality is demonstrated on the diagram below.

Introduction

Design models

Global analyse

Classification

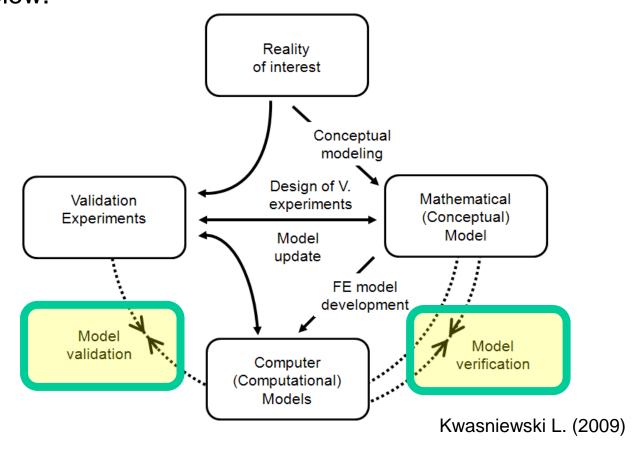
Component meth.

Interaction

Assessment I

CBFEM

General


Validation

Verification

Benchmark case

Assessment II

Terminology

Validation

 compares the numerical solution with the <u>experimental data.</u>

Verification

uses comparison of computational solutions
 with highly accurate <u>analytical or numerical solution.</u>

Benchmark case

 ais example for check of the software and its user by validated and simplified input and output.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

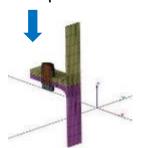
General

Validation

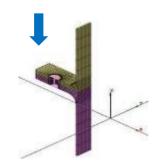
Verification

Benchmark case

Assessment II


Design and research oriented model

Current approval of design models consist of


- 1) Experiments
- Research oriented FE model (ROFEM)
 - 2) is **validated** on experiment.
 - 3) Numerical experiments are prepared.
- Design oriented analytical/numerical model (AM/DOFEM)
 - is verified to numerical experiments and/or another design models.
 - 5) Sensitivity study is prepared.
 - 6) Validity range is defined.
- Benchmark case (BC)
 - is prepared to help the users of model to check up its correctness and proper use.

Experiment

Research model

Design model

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

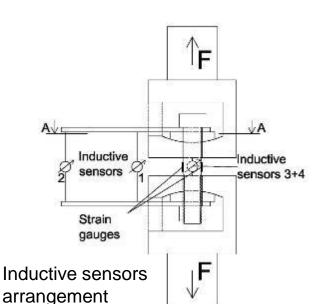
Assessment I

CBFEM

General

Validation

Verification


Benchmark case

Assessment II

Experiments with bolts in tension

- Out of dozens of published tests, 13 bolts of different lengths and diameter were tested to obtain the detailed forcedeformation behaviour.
- Bolts elongation was measured by inductive sensors.
- Bolts were fixed to the testing machine by special tools with bearing caps to ensure hinges on its ends.

Introduction

Design models
Global analyse
Classification
Component meth.
Interaction
Assessment I

CBFEM

General

Validation
Verification

Benchmark case

Assessment II

Failure modes of bolts in tension

 There are four possible failure modes of bolts loaded in tension:

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Stripping of nut threads

Rupture of bolt close to nut

Stripping of bolt threads

Rupture of bolt close to head

Validation for rupture of bolt close to head

 The figure shows the validation of research oriented model in case of failure mode rupture of bolt close to the bolt head.

Introduction

Design models

Global analyse

Classification

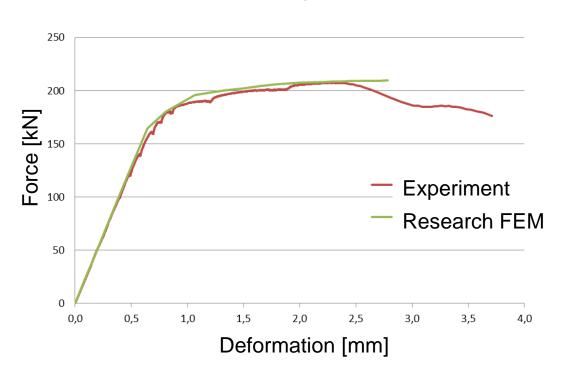
Component meth.

Interaction

Assessment I

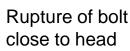
CBFEM

General

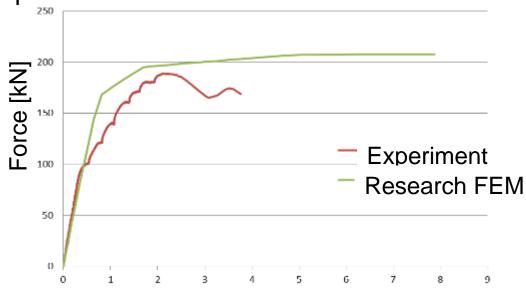

Validation

Verification

Benchmark case


Denominark case

Assessment II



Validation of stripping of nut thread

 The validation of the research oriented model in case of failure mode stripping of the nut thread is presented below.

Summary

Introduction

Design models
Global analyse

Classification

Interaction

CBFEM

General

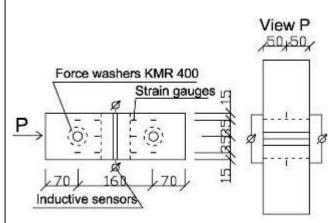
Validation Verification

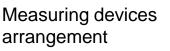
Benchmark case

Assessment II

Assessment I

Component meth.




Deformation [mm]

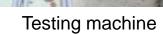
Stripping of nut threads

Experiment with T-stub in tension

- Two specimens were prepared with T stubs, cross sections HEB300 and HEB400 with bolts M24 8.8.
- T-stub deformation was measured by inductive sensors.
- Strains were measured on the expected yielding lines on flanges by strain gauges.
- Forces in the bolts were measured by KMR400 rings placed under the bolt heads.

Introduction

Design models
Global analyse
Classification
Component meth.
Interaction
Assessment I


CBFEM

General

Validation

Verification
Benchmark case
Assessment II

Validation of research model of T-stub in tension

 The Figure shows the validation of the research oriented model of T-stub from HEB300 loaded in tension.

Introduction

Design models

Global analyse

Classification

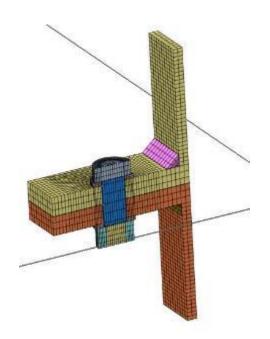
Component meth.

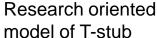
Interaction

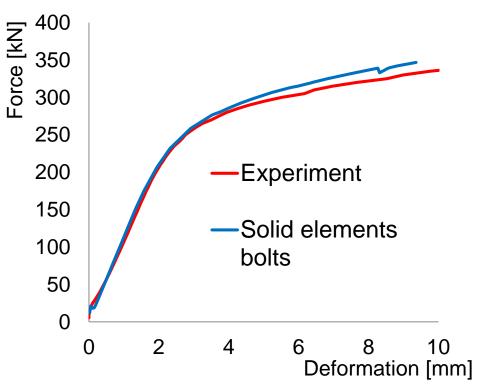
Assessment I

CBFEM

General


Validation


Verification


Benchmark case

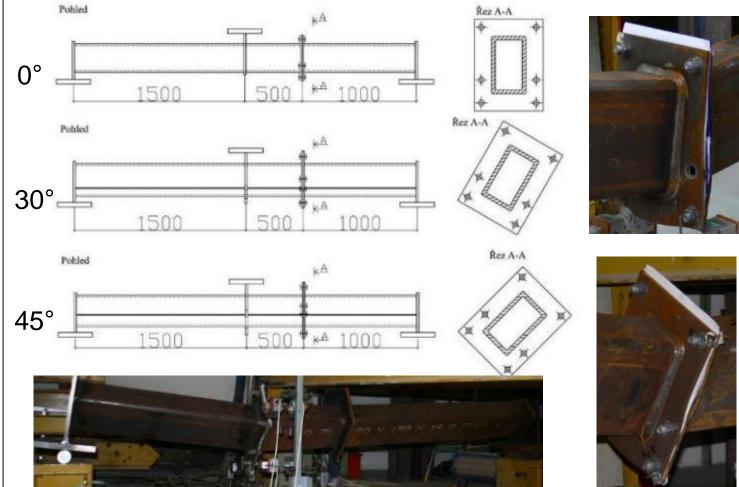
Assessment II

Experimentswith generally positioned end plates

 The experiments were prepared with three bolted beam to beam end plate connections.

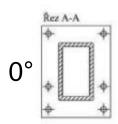
Introduction

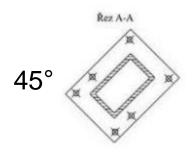
Design models
Global analyse
Classification
Component meth.
Interaction


Assessment I

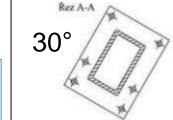
CBFEM

General


Validation
Verification
Benchmark case
Assessment II


Parameters of speciments for the generally positioned end plate

- Plate **P20** 400 x 300 mm
- Steel **S355** ($f_{y,exp} = 410 \text{ MPa}$; $f_{u,exp} = 582 \text{ MPa}$)
- Bolts **M20** 8.8
- Pitches vertical (35 230 100 35 mm)
 horizontal (30 240 30 mm)



Design models
Global analyse

Classification

Component meth.

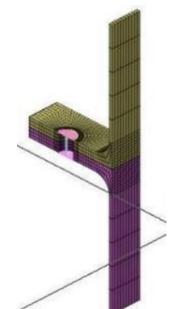
Interaction

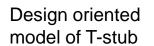
Assessment I

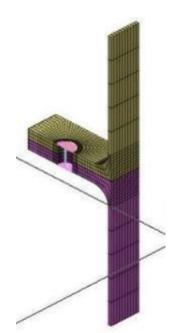
CBFEM

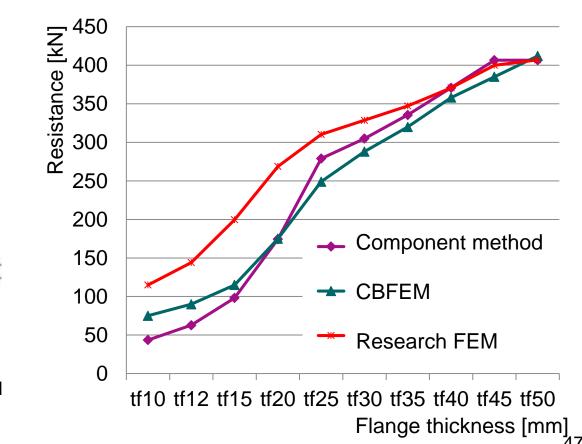
General

Validation


Verification


Benchmark case


Assessment II


The Figure shows the verification of the design oriented model of T-stub from HEB300 loaded in tension to research oriented FE model. Comparison to component method is

included.

Assessment II **Summary** CTU

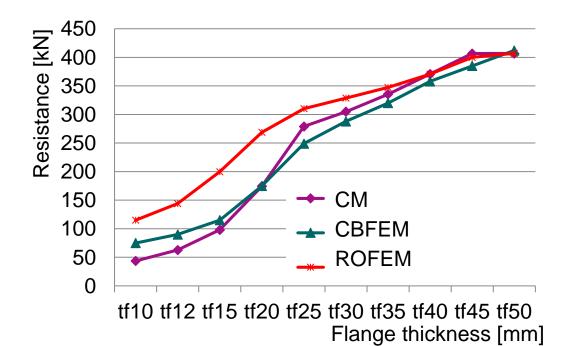
Introduction

Interaction Assessment I

CBFEM

General

Validation


Verification

Benchmark case

Design models Global analyse Classification

Component meth.

- The sensitivity study of thickness of the flange shows higher resistance according to CBFEM compared to CM for samples with flange thicknesses up to 20 mm.
- ROFEM gives even higher resistance for these samples.
- Higher resistance of both numerical models is due to neglection of membrane effect in CM.

Introduction

Design models

Global analyse

Classification

Component meth.

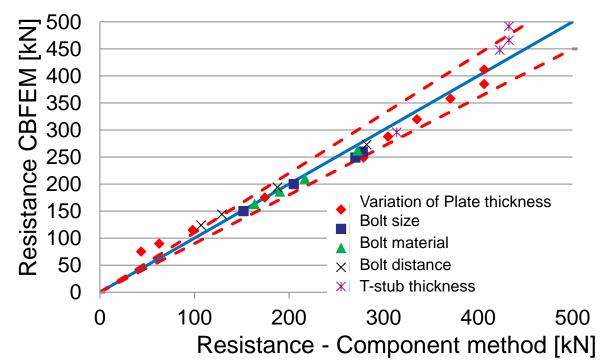
Interaction

Assessment I

CBFEM

General

Validation


Verification

Benchmark case

Assessment II

- To show the prediction of the CBFEM model, results of the studies are summarized in graph comparing resistances by CBFEM and component method. The results show that the difference of the two calculation methods is mostly up to 10%.
- In cases with CBFEM/CM > 1,1 accuracy of CBFEM is verified by the results of Research oriented FEM, which gives highest resistance in all selected cases.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

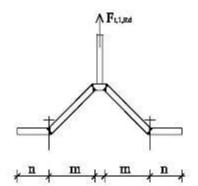
CBFEM

General

Validation

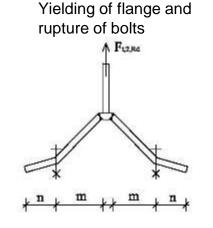
Verification

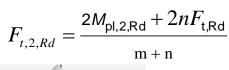
Benchmark case

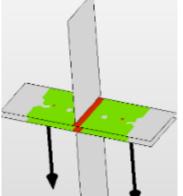

Assessment II

Three failure modes of T-stub are considered.

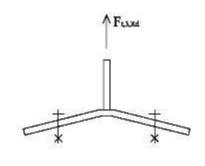
Component Method

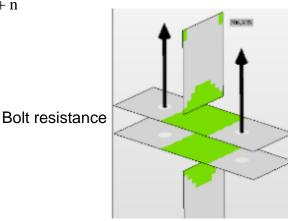

Full yielding of flange




$$F_{t,1,Rd} = \frac{(8n-2e_{w}) M_{pl,1,Rd}}{2mn-e_{w}(m+n)}$$

Component Based FEM


Yielding of flange



Rupture of bolts

$$F_{t,3,Rd} = 2F_{t,Rd}$$

Introduction

Interaction
Assessment I

CBFEM

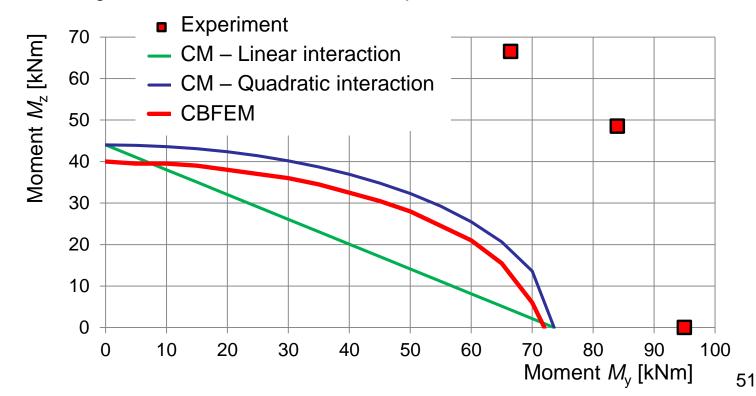
General

Validation

Verification

Benchmark case

Assessment II


Summary

Design models
Global analyse
Classification

Component meth.

Verification of generally loaded end plate

- Resistance calculated by CBFEM is compared with the results of CM and experimental results. The sensitivity study is focused on ratio of bending moments in strong and week axis, see Figure below.
- CM with linear interaction gives conservative values of resistance.
- CM with quadratic interaction gives the highest resistances, which are to experimental results still rather conservative.
- CBFEM gives similar results as CM with quadratic interaction.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

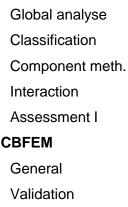
Assessment I

CBFEM

General

Validation

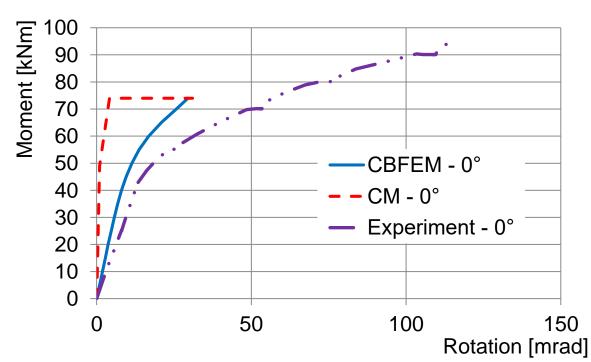
Verification


Benchmark case

Assessment II

Verification of end plate

- Comparison of the global behaviour described by moment-rotation diagram is prepared. Attention is focused to initial stiffness, resistance and deformation capacity.
- Sample 0° with strong axis bending moment is chosen to present as reference, see Figure below.
- CM gives higher initial stiffness compared to CBFEM and experimental data.
- Resistance predicted by CM and CBFEM are similar.
- Experimentally reached resistance is higher.


Introduction

Design models

Verification

Benchmark case Assessment II

Benchmark case T-stub

Inputs

T-stub

- Steel S235
- Flange thickness $t_f = 20 \text{ mm}$
- Web thickness $t_w = 20 \text{ mm}$
- Flange width $b_f = 300 \text{ mm}$
- Length b = 100 mm
- Double fillet weld $a_w = 10 \text{ mm}$

Bolts

- 2 x M24 8.8
- O Distance of the bolts w = 165 mm

Outputs

- Design resistance in tension $F_{T.Rd}$ = 175 kN
- Collapse mode full yielding of the flange with maximal strain 5 %
- Utilization of the bolts 88,4 %
- Utilization of the welds 49,1 %

Introduction

Design models

Global analyse

Classification

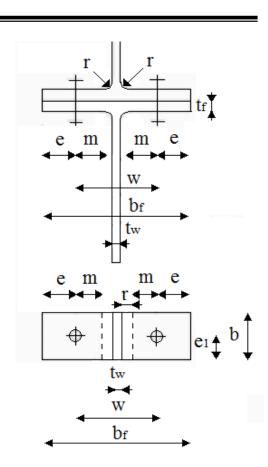
Component meth.

Interaction

Assessment I

CBFEM

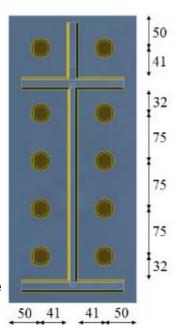
General


Validation

Verification

Assessment II

Benchmark case end plate connection


Inputs

- Steel S235
- Beam IPE 330
- o Column HEB 300
- End plate height $h_p = 450 (50-103-75-75-75) \text{ mm}$
- End plate width $b_p = 200 (50-100-50) \text{ mm}$
- End plate P15
- Column stiffeners 15 mm thick and 300 mm wide
- End plate stiffener 10 mm thick and 90 mm wide
- Flange weld throat thickness $a_f = 8 \text{ mm}$
- Web weld throat thickness $a_w = 5 \text{ mm}$
- Bolts M24 8.8

Outputs

- Design resistance in bending $M_{Rd} = 209 \text{ kNm}$
- Corresponding vertical shear force V_{Ed} = 209 kN
- Collapse mode yielding of the beam stiffener on upper flange
- Utilization of the bolts 89,5 %
- Utilization of the welds 87,2 %

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

> Benchmark case

Assessment II

Assessment II

- How is limited plastic strain for design of resistances of plates?
- How is simplified the convergence of finite elements procedure of steel members and plates?
- How is modelled the bolt model in CBFEM?
- How is modelled interaction bolts loaded at the same time in shear and tension?
- As how is transferred the shear force as the slip resistance bolt reach its resistance?
- Why is filled weld modelled by equivalent solid elastoplastic element, which is added between plates?
- How differs validation from verification?
- What are two major purposes of benchmark cases in application of FEA analyses?

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II
Summary

Summary

Lecture 1
Beam to column moment connection

Summary

- The design of beam to column moment connections is focussed to preferable yielding of steel plates and brittle failure of fasteners, bolts, welds.
- The design of beam to column moment connection by Component Method (CM) is very accurate in components behaviour modelling.
- The lever arm is in CM estimated based on the best engineering practice. Its prediction is good in well know and tested connections and joints. Its educated guess affects the resistance.
- The CM is prepared for software tools and design tables not for had calculation.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Summary

- The design of connections by finite element method is not replication of the physical experiment. The designer is interested into the limited yielding of steel plates and failure of fasteners.
- Component based finite element method (CBFEM) is taking advantage of accurate modelling of component behaviour based on experiment and accuracy of discrete analyse of steel plate by FEM
- The Validation and Verification procedure is integral part of any finite element analyses. The procedure is checking the software and the use by designer.
- CBFEM offers the designer a discrete view on the behaviour, see next slides.

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

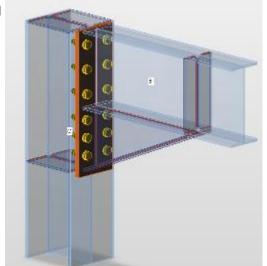
CBFEM

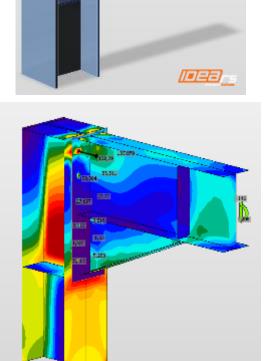
General

Validation

Verification

Benchmark case


Assessment II



Prediction of global and local behaviour

Beam to column connection

- Full depth end plate 25 mm
- Rafter IPE 400
- Column HEA 320
- 12 bolts M24 8.8
- Haunch 700x300 mm
- Flange 15x150 mm
- Stiffeners P20
- Steel S355

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Introduction

Design models

Global analyse

Classification

Component meth.

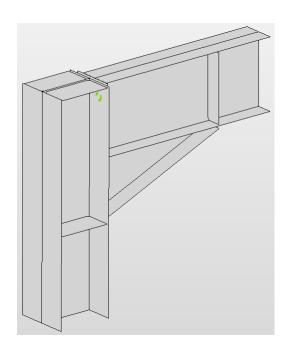
Interaction

Assessment I

CBFEM

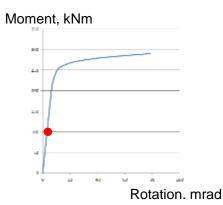
General

Validation


Verification

Benchmark case

Assessment II



M = 100 kNm

Fi = 3.2 mrad

Si = 31,6 MNm/rad

Column flange plastification round bolts

Well designed steel connection starts to classify early to allow plastic distribution of forces between connectors.

Introduction

Design models

Global analyse

Classification

Component meth.

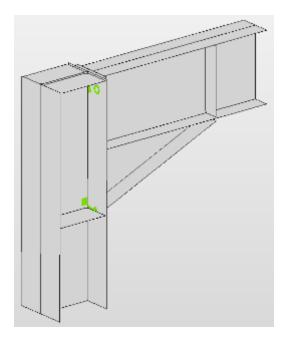
Interaction

Assessment I

CBFEM

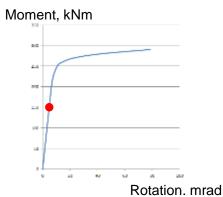
General

Validation


Verification

Benchmark case

Assessment II



M = 150 kNm

Fi = 4.8 mrad

Si = 31,6 MNm/rad

Column web plastification

Introduction

Design models

Global analyse

Classification

Component meth.

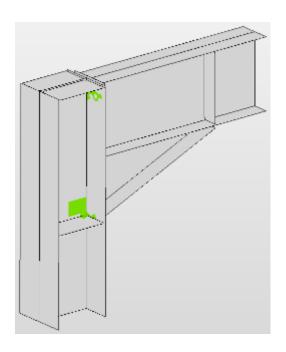
Interaction

Assessment I

CBFEM

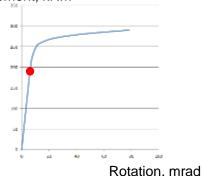
General

Validation


Verification

Benchmark case

Assessment II


M = 180 kNm

Fi = 5.7 mrad

Si = 31,5

MNm/rad

Moment, kNm

Progress of column web plastification

Introduction

Design models

Global analyse

Classification

Component meth.

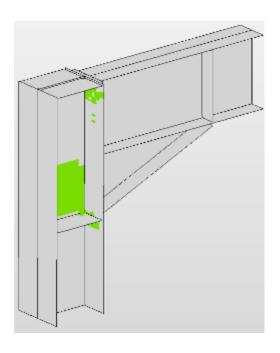
Interaction

Assessment I

CBFEM

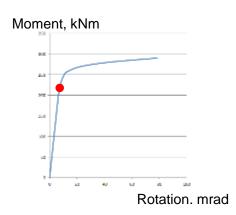
General

Validation


Verification

Benchmark case

Assessment II



M = 220 kNm

Fi = 7,3 mrad

Si = 30,0 MNm/rad

Progress of column web plastification

Introduction

Design models

Global analyse

Classification

Component meth.

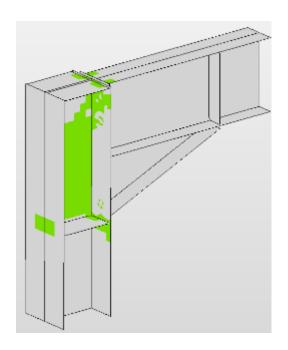
Interaction

Assessment I

CBFEM

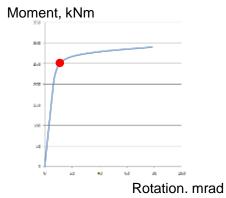
General

Validation


Verification

Benchmark case

Assessment II



M = 250 kNm

Fi = 10,7 mrad

Si = 23,4 MNm/rad

Column web full plastification

Introduction

Design models

Global analyse

Classification

Component meth.

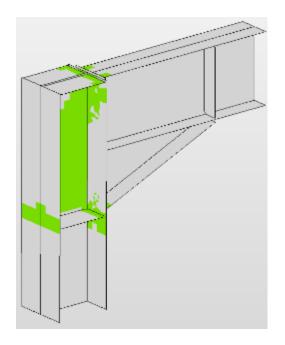
Interaction

Assessment I

CBFEM

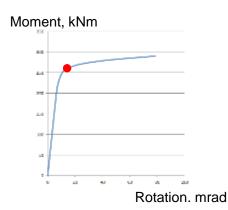
General

Validation


Verification

Benchmark case

Assessment II



M = 260 kNm

Fi = 14,7 mrad

 $Si = 17,4 \, MNm/rad$

Column flange on opposite side plastification

Introduction

Design models

Global analyse

Classification

Component meth.

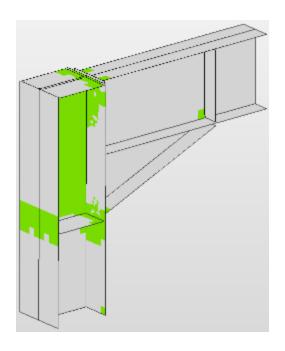
Interaction

Assessment I

CBFEM

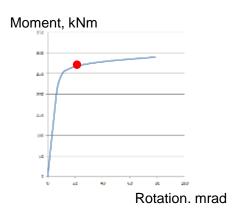
General

Validation


Verification

Benchmark case

Assessment II



M = 270 kNm

Fi = 23,4 mrad

Si = 11,5 MNm/rad

Beam above haunch starts yield

Introduction

Design models

Global analyse

Classification

Component meth.

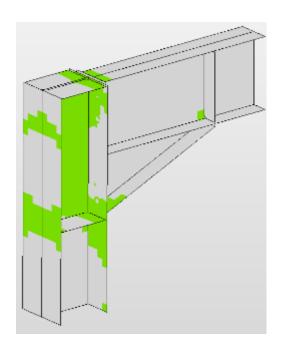
Interaction

Assessment I

CBFEM

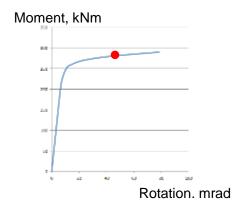
General

Validation


Verification

Benchmark case

Assessment II



M = 280 kNm

Fi = 43,6 mrad

Si = 6,4 MNm/rad

Further plastification

Introduction

Design models

Global analyse

Classification

Component meth.

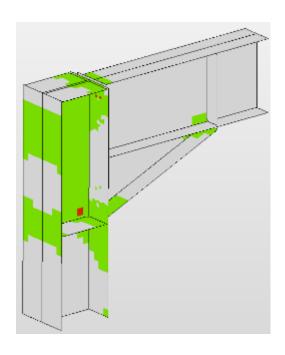
Interaction

Assessment I

CBFEM

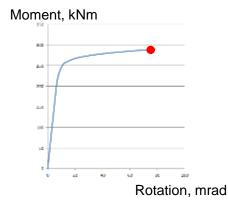
General

Validation


Verification

Benchmark case

Assessment II



M = 290 kNm

Fi = 78,6 mrad

Si = 3.7 MNm/rad

Resistance reached

- By 5% strain in column web loaded in shear and compression.
- Well designed steel connection starts to plasticize early to allow plastic distribution of forces between connectors/plates.

Introduction

Design models

Global analyse

Classification

Component meth.

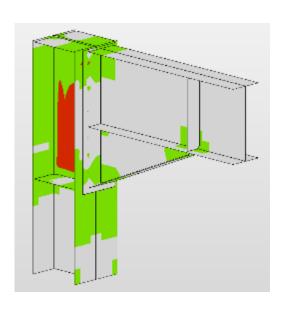
Interaction

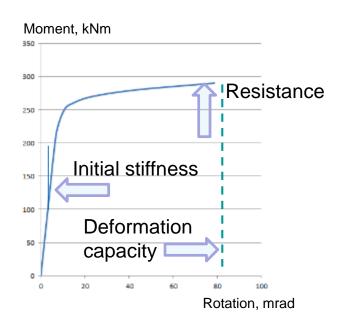
Assessment I

CBFEM

General

Validation


Verification


Benchmark case

Assessment II

Summary

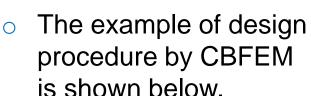
The major joint in bending design characteristics

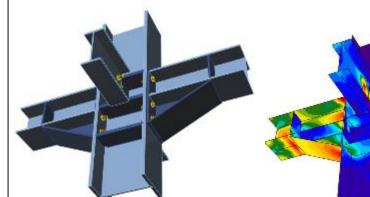
where $S_{i,ini}$ is the initial stiffness,

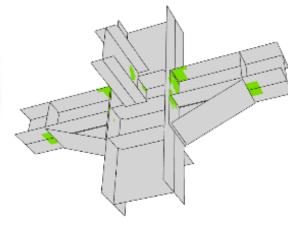
 $M_{\rm j,Rd}$ is the design bending resistance,

 $arphi_{ extsf{Cd}}$ is the deformation capacity

are well described.


What is the major reason


of using CBFEM for Beam to column moment connections?


Generally loaded complex joints

is difficult to design in space accurately by Component or other methods.

procedure by CBFEM is shown below.

3D model

Finite element analyses

Design check

Introduction

Design models

Global analyse

Classification

Component meth.

Interaction

Assessment I

CBFEM

General

Validation

Verification

Benchmark case

Assessment II

Thank your for attention

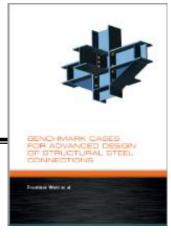
URL: steel.fsv.cvut.cz

František Wald, Lukáš Gödrich, Marta Kuříková Luboš Šabatka, Jaromír Kabeláč, Drahoš Kojala

Notes to users of the lecture

- Subject Design of the open sections joints.
- Lecture duration 60 mins.
- Keywords Civil Engineering, Structural design, Steel structure, Beam to column connection, Beam to beam connection, Beam spices, Open section, Joint, Component Method, Component based Finite Element Method, Eurocode.
- Aspects to be discussed Experiments, Reasons and methods of classification, Principles of CM, Major components in CM, Interaction of forces, Components in CBFEM, Principles of CBFEM, Validation and Verification.
- Further reading relevant documents in references and relevant European design standards, Eurocodes including National Annexes.
- Preparation for tutorial exercise see examples in References.

Sources


To Component Mehod

- Agerskov H., High-strength bolted connections subject to prying, *Journal of Structural Division*, ASCE, 102 (1), 1976, 161-175.
- Block F.M., Davison J.B., Burgess I.W., Plank R.J., Deformation-reversal in component-based connection elements for analysis of steel frames in fire, *Journal of Constructional Steel Research*, 86, 2013, 54-65.
- Da Silva L., Lima L., Vellasco P., Andrade S., *Experimental behaviour of end*plate beam-to-column joints under bending and axial force, Database reporting and discussion of results, Report on ECCS-TC10 Meeting in Ljubljana, 2002.
- Da Silva L., Towards a consistent design approach for steel joints under generalized loading, *Journal of Constructional Steel Research*, 64, 2008, 1059-1075.
- Chen, W.F., Abdalla K.M., Expanded database of semi-rigid steel connections, *Computers and Structures*, 56, (4), 1995, 553-564.
- Kishi N., Chen W.F. Moment-Rotation Relations of Semirigid Connections with Angles, *Journal of Structural Engineering*, 116 (7), 1990, 1813-1834.
- Zoetemeijer P., *Proposal for Standardisation of Extended End Plate Connection based on Test results Test and Analysis*, Ref. No. 6-83-23, Steven Laboratory, Delft, 1983.
- Zoetemeijer P., Summary of the research on bolted beam-to-column connections, TU-Delft report 26-6-90-2, Delft, 1990.

Sources

To Component Based Finite Element Mehod

- Bursi O. S., Jaspart J. P., Benchmarks for Finite Element Modelling of Bolted Steel Connections, *Journal of Constructional Steel Research*, 43 (1-3), 1997, 17-42.
- Kwasniewski L., On practical problems with verification and validation of computational models, *Archives of Civil Engineering*, LV, 3, 2009, 323-346.
- Oberkampf, W.L. TrucanoT.G., Hirsch C., Verification, validation, and predictive capability in computational engineering and physics, *Appl. Mech. Rev.* 57 (5), 345–384, 2004
- Virdi K. S. et al, *Numerical Simulation of Semi Rigid Connections by the Finite Element Method*, Report of Working Group 6 Numerical, Simulation COST C1, Brussels Luxembourg, 1999.
- Wald F. et al, Benchmark cases for advanced design of structural steel connections, Česká technika ČVUT, 2016.
- Wald F., Gödrich L., Šabatka L., Kabeláč J., Navrátil J., Component Based Finite Element Model of Structural Connections, *in Steel, Space and Composite Structures*, Singapore, 2014, 337-344.

Standards

- EN1992-1-1, Eurocode 2, Design of concrete structures, Part 1-1, General rules and rules for buildings, CEN, Brussels, 2005.
- EN1993-1-5, Eurocode 3, Design of steel structures, Part 1-5, Plated Structural Elements, CEN, Brussels, 2005.
- EN1993-1-8:2006, Eurocode 3, Design of steel structures, Part 1-8, *Design of joints*, CEN, Brussels, 2006.
- EN1994-1-1:2010, Eurocode 4, Design of composite steel and concrete structures, Part 1-1, *General rules and rules for buildings*, CEN, 2010.
- ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel, Part 1, Bolts, screws and studs with specified, property classes, Coarse thread and fine pitch thread, Geneva, 2013

