THE GROWING STEEL HOUSE

The growing steel house

The concept of the house is to address low cost housing that attracts a wide clientele. Architectural design of the project focuses to provide openness of the house and surrounding area. To ensure the variability and flexibility of the concept, the structural design uses prefabricated panels and a steel skeleton. The basic proposal of the house is a starting two floored unit designed for the young generation, with an open concept design allowing for rapid conversion of space.

Ground floor contains the entrance, changing room, basic toilet and water tank room. Living room is connected with the dining room and kitchen. The first floor bears a study room, bathroom and bedroom. Optical interconnection of the ground floor and the first floor ensures throughview in the middle of the house.

Windows are oriented to the south in order to produce a dominant impression. However, they also serve the important function of illuminating the interior of the house as well as linking it to the garden outside, thus further enhancing the open concept of the house.

Since the concept is designed for a younger generation if there is an addition to the family, due to the open concept, re-organizing the space can be achieved rapidly and with relative ease.

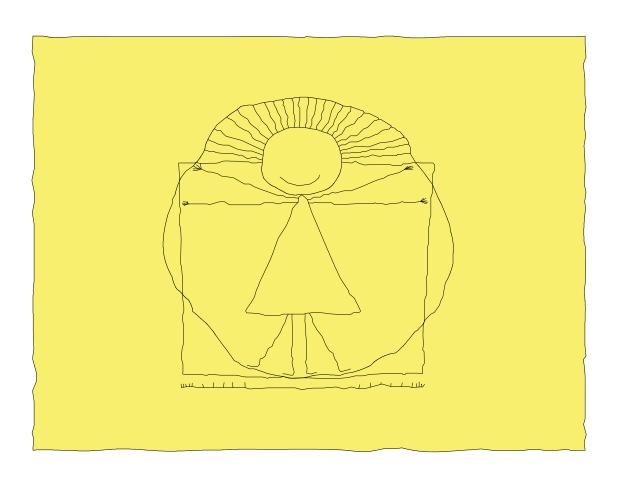
The studyroom can be converted to another children's room. Further addition/expansion, not neccessarily another child but perhaps a car, it is possible to transform the house on a larger scale. For example, on the ground floor there is space to extend and merge the walls with that of the garage, and in the first floor two children rooms with bath room.

The basic building block of the building is a steel skeleton composed of square tube size 120×120 mm. Peripheral walls are provided by prefabricated system. Offer of panels starts at the solid panel, the panel with window (smaller and larger format), the panel containing the door, the half panel ect. Precast panels have uniform dimensions $2800 \times 3750 \times 120$ mm. Their construction is based on the skeleton formed by U-shaped profiles (90×40 mm), the space inside is filled with mineral wool. Sheathing is done with the help of OSB board with a thickness of 15 mm. The interior board has a larger diffusion resistance, avoiding the need to use a vapour barrier, but we have to seal joining of panels and columns. Bars in the interior are made of plasterboard sandwiches with thickness of 150 mm. Construction of the ceiling and also roof provides a cross-oriented steelgirders (profile IPE 270). Distribution of forces from the ceiling is also done by purlins (profile IPE 160) and trapezoidal plates with concrete grout with a thickness of 60 mm. The whole building is carried by strip foundations. Facade is overlayed with Cembrit templates. There is the Solarwall system used for air heating, see solarwall: www.solarwall.com

Beginning idea was to propose a house according to the evolving needs of the owner. The house is like a man - living organism which is adapting to. Man is developing and changing his needs during his life. We tried to design a house which would evolve with people. That it would fulfill their needs and requirements. Young couple can find freedom without barriers in it and on the other side people with children certainties and enough space to live. According to this there are no partitions in the first face and this will develop to the last phase where there is much more space but divided in rooms. The last phase (phase C, fully grown house) is made by no interference with the living space.

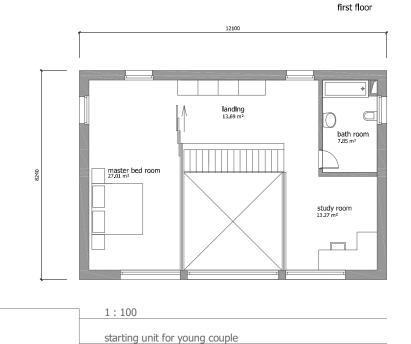
One of the other opportunities which the house gives is close connection of the interior with the nature and surrounding. This is thanks to the south façade which is fully glassed.

One of the main ideas that also influenced the architectonical design was the aspiration to make a house that could be built easily a quickly. That is because of the need of young people to move from a flat they are selling. To accomplish this need, there are used just screw connections and the majority of components used in the house is prefab and delivered directly to the construction.


Every owner can design the façade as they wish. This can partly ensure the urban variety, when there are more houses at one area.

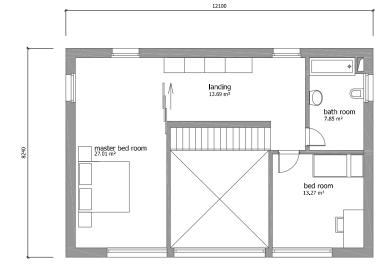
The house was also designed as a study of various thicknesses of thermal insulation. Basically there are 80 mm of thermal insulation in prefab panels and then three types of contact insulation system (120, 180 and 220 mm). This was done to see the influence of thermal insulation on energy demandingness of heating. As for the thickness of 220 mm of thermal insulation we got on the standard of passive house. Nowadays this is quite important for the area of the Czech Republic because of the influence on the environment and also because there is a donation programme of the Ministry of the environment. They give extra money to people who build their house in a passive standard.

The fully glassed façade orientated to the South allows us to use the solar gains during the winter time to low down the energy needed for heating. On the other side there are outdoor blinds to reduce the solar gains and energy needed for cooling during the summer time. On the same façade there will be installed the solarwall system which will help to heat up the air coming to the interior during the winter time.



ARCHITECTURE PART

PHASE A ground floor


open space / master bed room and bed room
open-ended / master bed room or bed room

PHASE B ground floor

first floor

1: 100

young couple with baby

change in plan arrangement / study room to bed room

closed space / master bedroom and bed room

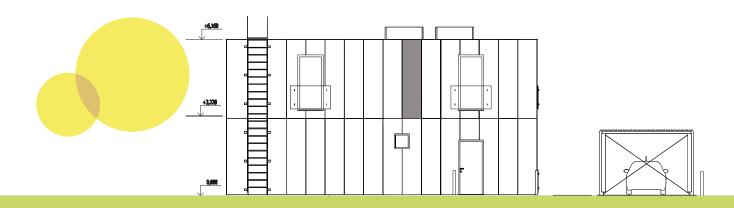
open-ended / master bed room or bed room

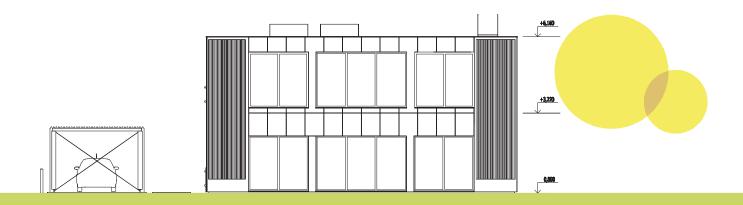
PHASE C ground floor

1: 100

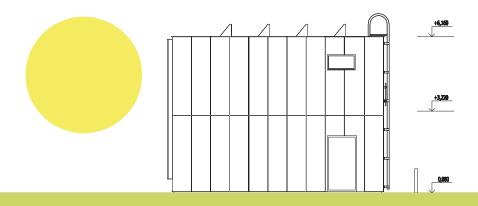
couple with 2 children

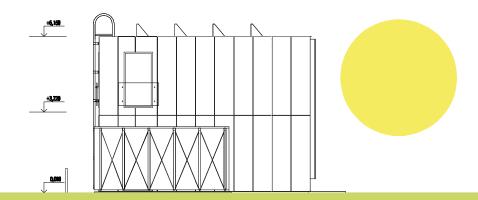
expanded by 2 bed rooms and garage


study room


landing 13.69 m² 8240

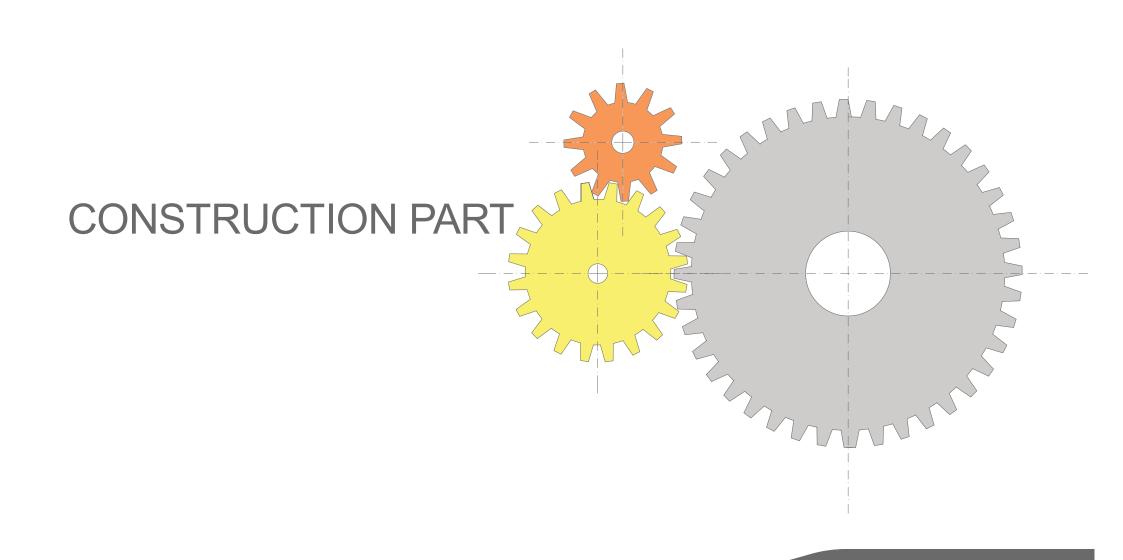
phase C - couple with two children growing steel house - family rules

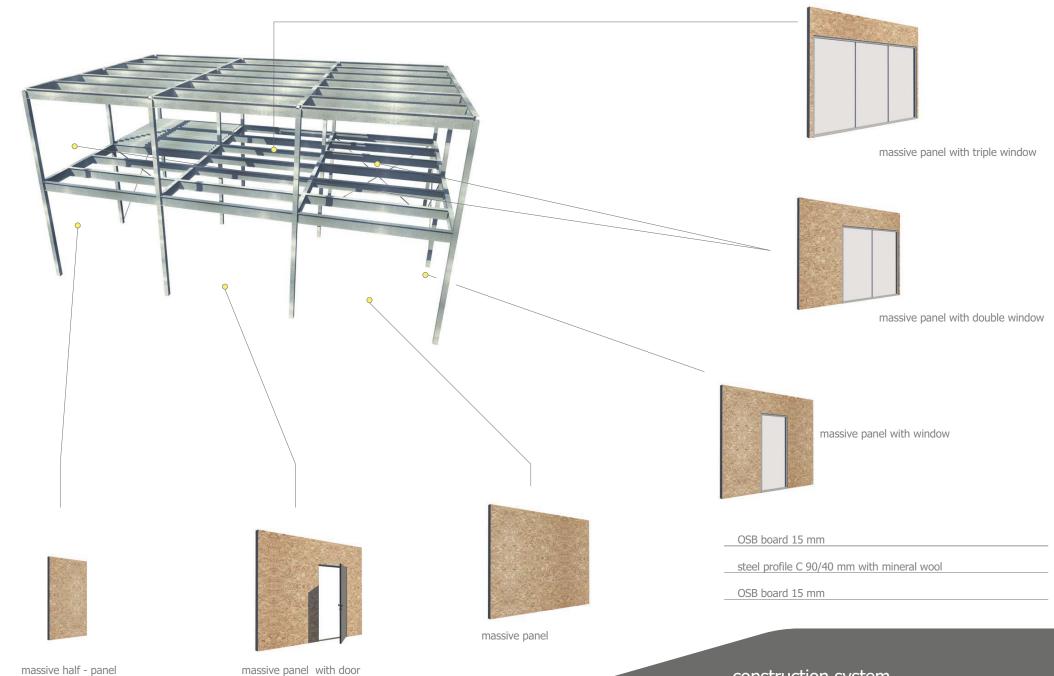

north


south

east

west




exterior views growing steel house - family rules

combination of colours growing steel house - family rules

construction system growing steel house - family rules

IN - composition

OSB panel 15 mm

air space 50 mm

surface conditioning

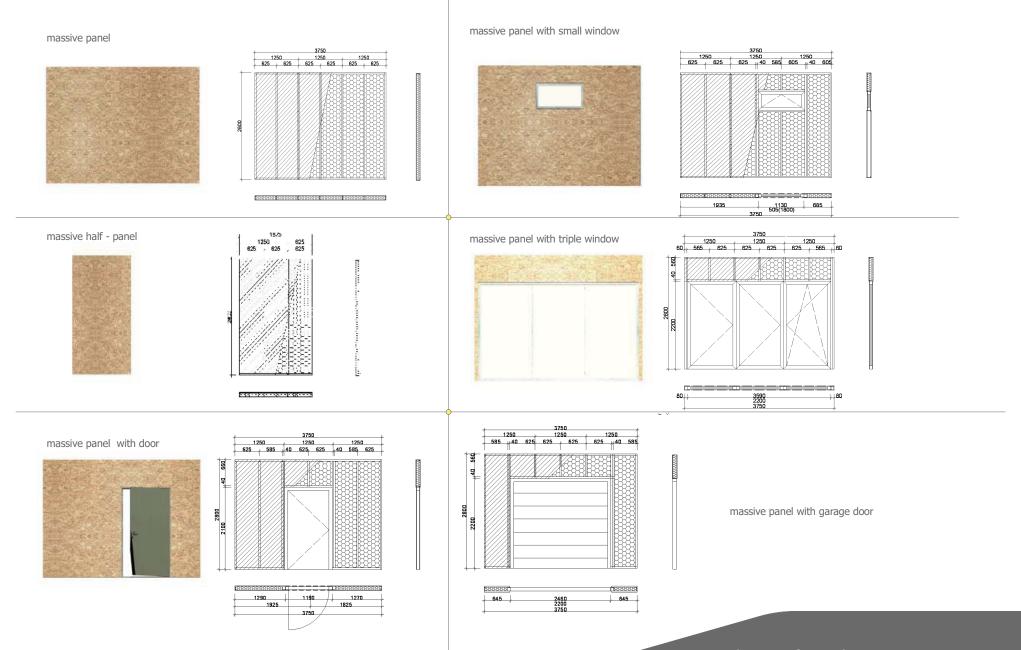
gypsum plasterboard 13 mm

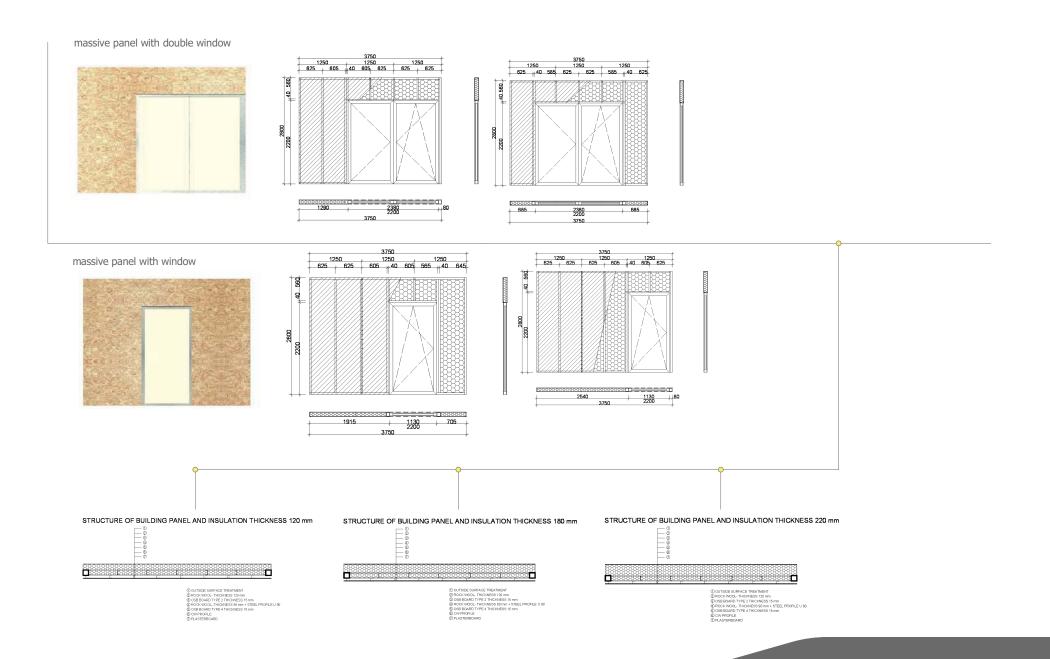
steel shape C 90/40 + mineral wool

EX - composition

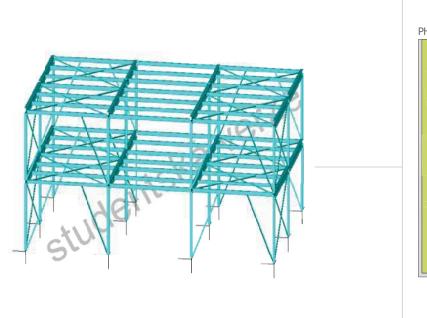
OSB panel 15 mm

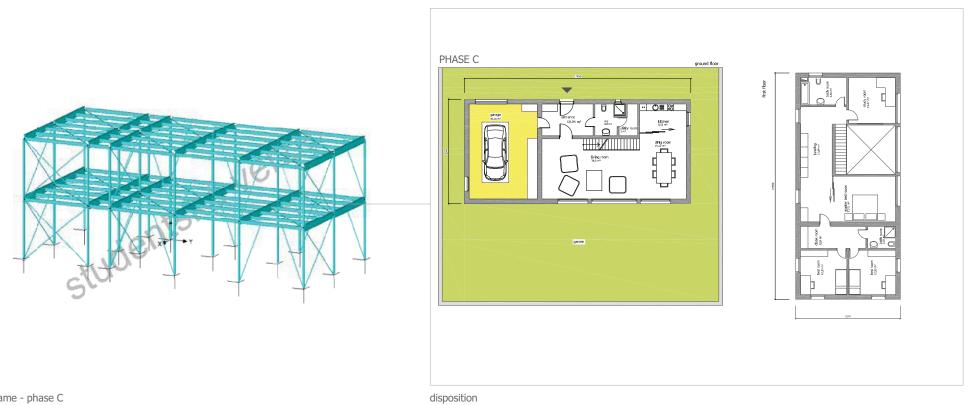
mineral wool 120 - 220 mm


air space 50 mm


surface conditioning

construction system - composition growing steel house - family rules


construction system - external walls growing steel house - family rules


STATIC CALCULATION

steel frame - phase A,B disposition

steel frame - phase C

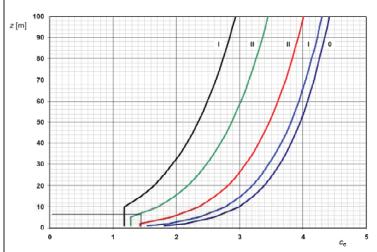
Wind load

Basic speed of the wind

```
\begin{split} &v_b {=} C_{dir}^* C_{season}^* v_{b,0} \\ &C_{dir}^= 1,0 \text{ ( coefficient - wind direction )} \end{split} \qquad \qquad C_{season} {=} 1,0 \text{ ( coefficient - season )} \end{split}
```

v_{b,0}=27,5 m/s (estimated from the map of wind speed, ČSN EN 1991-1-4, general location)

v_b=1,0*1,0*27,5=**27,5 m/s**


basic dynamic pressure of the wind

$$q_b=1/2*\rho*v_b^2(z)$$

 $\rho=1,25 \text{ kg/m}^3$ (density of the air)
 $v_b=27,5 \text{ m/s}$
 $q_b=1/2*1,25*27,5^2=472,6563 \text{ N/m2}$

maximal dynamic pressure

 $q_p = c_e(z) * q_b$

 c_e =1,4 (estimated as a function of height beyond terrain and the terrain cathegory, picture 4.2, ČSN EN 1991-1-4)

Obrázek 4.2 – Součinitele expozice $c_e(z)$ pro $c_0 = 1,0$ a $k_1 = 1,0$

terrain cathegory - III (areas equally covered by vegetation or buildings) q_0 =472,6563 N/m²

q_p=1,4*472,6563=**661,7188 N/m²**

wind pressure on the surface of the construction

 $w_e = q_p(z)^* C_{pe}$ $q_p = 661,719 \text{ N/m}^2$

 C_{pe}

area	wnd orientation θ=0°	wnd orientation θ =90°
Α	-1,2	-1,2
В	-1	-1,4
С	-0,5	-0,5
D	0,75	0,8
E	-0,4	-0,5
F	-1,2	-1,2
G	-0,8	-0,8
Н	-0,7	-0,7
	0,2	0,2

 $w_e [N/m^2]$

area	wind orientation	wind orientation
Α	-794,063	-794,063
В	-661,719	-926,406
С	-330,859	-330,859
D	496,289	529,375
E	-264,688	-330,859
F	-794,063	-794,063
G	-529,375	-529,375
Н	-463,203	-463,203
1	132,344	132,344

conversion of the presure to purlins θ=0°

purlin	measure 1	measure 2	w _e 1	q [kN/m′]
1-2 field	1,250	0,000	-794,063	-0,993
3. field	1,250	0,000	132,344	0,165
1-2 border field	0,625	0,000	-794,063	-0,496
border field	0.625	0.000	132.344	0.083

conversion of the presure to purlins θ=90°

purlin	measure 1	measure 2	w _e 1	q [kN/m′]
2-5 all fields	1,250	0,000	-794,063	-0,993
all fields	1,250	0,000	132,344	0,165
1 kraj všechny pole	0,625	0,000	-794,063	-0,496
7 kraj všechny pole	0,625	0,000	132,344	0,083

conversion of the pressure on the fixtures of enclosure wall panels to columns θ =0°

fixtures	distance 1	distance 2	w _e 2	Q [kN]
face wall	3,250	3,000	496,289	1,210
back wall	3,250	3,000	-264,688	-0,645
1. field	3,250	3,000	-794,063	-1,936
2. field	3,250	3,000	-661,719	-1,613
3. field	3,250	3,000	-330,859	-0,806

conversion of the pressure on the fixtures of enclosure wall panels to columns θ=90°

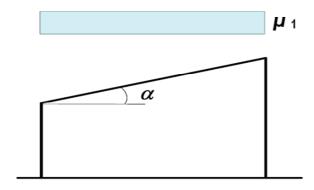
fixtures	distance 1	distance 2	w _e 2	Q [kN]
face wall	3,250	3,000	529,375	1,290
back wall	3,250	3,000	-330,859	-0,806
1. field	3,250	3,000	-794,063	-1,936
2.,3. field	3,250	3,000	-926,406	-2,258

Snow load

specification of snow load, done according to ČSN EN 19 for permanent or temporary design situations

$$s=\mu_i^*C_e^*C_t^*s_k$$

s_k=3,0 KN/m² estimated according to the map of snow areas of the Czech Republic


location generall, II. snow area

C_e=1,0 coefficient - exposition

estimated fot the normal shape of the landscape

C_t=1,0 thermal coefficient

u form factor of snow load

 $\mu_1 = 0.8$

0°≤α≤30° α=0°

s=0,8*1,0*1,0*3,0=**2,4 KN/m**²

conversion of the snow pressure to purlins

distance of purlins in the ground plan I=1,25 r

boundary 0,625 1,5 middle 1,25 3	purlin	width of loading	value of loading Q [kN/m´]
middle 1,25 3	boundary	0,625	1,5
	middle	1,25	3

Self-weight load+ incidental load (depends on the character of using)

Construction of the floor

						design
			characteristic	load		load
Self weight			[kN/m²]		γF	[kN/m²]
clay tiles	0,008	12		0,096	1,35	0,130
anhydrit cast floor	0,04	20		0,800	1,35	1,080
thermal insulation	0,06	1,82		0,109	1,35	0,147
concrete slab	0,060	26,000		1,560	1,35	2,106
trapezoidal plate	1,000	0,150		0,150	1,35	0,203
soffit	1,000	0,150		0,150	1,35	0,203
		summary		2,865		3,868
multiplying by loading		1,250	3	3,582		4,835
width		0,625	1	,791		2,418

Incidental load		characteristic load [kN/m²]	γғ	design load [kN/m²]
utility load	summary	2,000 2,000	1,5	3,000 3,000
multiplying by loading width	1,250 0,625	2,500 1,250		3,750 1,875

Construction of roof

				design
		characteristic load		load
		[kN/m²]	γғ	[kN/m²]
1	1,5	1,500	1,35	2,025
0,3	1,82	0,546	1,35	0,737
0,067	26,000	1,742	1,35	2,352
1,000	0,150	0,150	1,35	0,203
1,000	0,150	0,150	1,35	0,203
	summary	4,088		5,519
	1,250 0,625	5,110 2,555		6,899 3,449
	0,067 1,000 1,000	0,3 1,82 0,067 26,000 1,000 0,150 summary 1,250	1 1,5 1,500 0,3 1,82 0,546 0,067 26,000 1,742 1,000 0,150 0,150 1,000 0,150 summary 4,088 1,250 5,110	1 1,5 1,500 1,35 0,3 1,82 0,546 1,35 0,067 26,000 1,742 1,35 1,000 0,150 0,150 1,35 1,000 0,150 0,150 1,35 summary 4,088 1,250 5,110

Incidental load		characteristic load [kN/m²]	γF	design load [kN/m²]
utility load	summary	2,000 2,000		3,000 3,000
multiplying by loading width	1,250 0,625	2,500 1,250		3,750 1,875

Enclousure wall panel

Self weight			characteristic load [kN/m²]	γF	design load [kN/m²]
2*OSB slab thickness 15mm	22,50	0,100	2,250	1,35	3,038
thermal insulation	13,50	0,672	9,072	1,35	12,247
steel section	28,50	0,020	0,570	1,35	0,770
summary			11,892		16,054

glossary: OSB slab

OSB slab weight 0,1 kN/m2 * 2 slabs * 3,75(lenght) * 3(height) steel section (C100) weight 0,02kN/m * lenght of all sections 3 * 3,75(horizontally) + 4 * 3(vertically)

weight of the panel carried through by one fixture [kN] 2,973 4,014

Load combinations

$$\textstyle\sum_{i\geq 1}\gamma_{Gi}G_{ki} + \gamma_{Q1}Q_{k1} + \sum_{i\geq 1}\gamma_{Qi}\psi_{0i}Q_{ki}$$

1. self weight load + incidental load

 $1,35*G_k+1,5*Q_N$

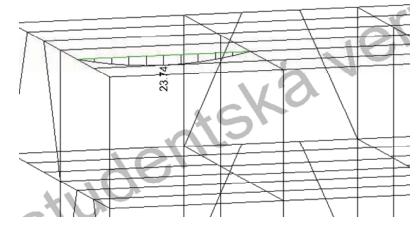
2. self weight load + incidental load + snow load

1,35*G_k+1,5*Q_N+0,6*1,5*Q_S

3. sself weight load + wind load

0,9*G_k+1,5*Q_V

Design of the purlin


(there is used steel S 355 for the design)

(counted with software FIN 3D) Counted reactions

> $R_{Sd} = V_{Sd} =$ 25,33 kN

Counted bending moment (counted with software FIN 3D)

23,7400 kNm

Horizontal module needed

$$W_{min}$$
= M_{Sd}/f_{yd} f_{yd} 308,7 Mpa (steel S355)

W_{min}= 23,74*10^3/308,7

W_{min}= <u>76,9031</u> mm³

Profile design

	IPE 160		
m=	12,9	kg/m	
A=	1543	mm^2	
W _y =	77300	mm^3	
W _{pl,y} =	88340	mm^3	
l _y =	5412000	mm ⁴	
A _{vz} =	764	mm^2	

Recognition of the designed profile

Torque loading capacity

 $M_{pl,Rd} = W_{pl,y} * f_{yd}$

 $M_{pl,Rd}$ = 88340*308,7

 M_{Sd} = 23,7400 kNm M_{pl.Rd}= <u>27,2706</u> kNm ->Purlin complies

Shear carrying capacity $V_{pl,Rd} = A_{VZ} f_{vd} \sqrt{3}$ $V_{pl,Rd} = 764*308,7/\sqrt{3}$ V_{pl,Rd}= **136,1662** kN $V_{Sd} = 25,33 \text{ kN}$ ->Purlin complies Limit the applicability of state - deflection (all load) 5,239 kN/m $g_k + q_k = 10,739$ 5,5 kN/m $\delta = (5/384) * (g_k*L^4)/(EI_v)$ $\delta = (5/384)*(5,239*3750^4)/(210000*5412000)$ δ= <u>11,870</u> mm δ_{lim} = L/250= 15 mm Summary of all purlins in the structure and their weight

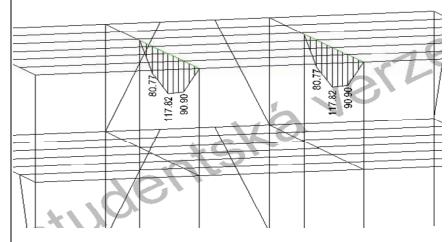
number of purlins weight of one purlin m= 12,9 kg/m lenght of one purlin I= 3,75 m weight summary m_c = **2031,75** kg

Design of a girder

(there is used steel S 355 for the design)

Counted reactions from purlins (counted with software FIN 3D)

 $F_k = 50,66 \text{ kN}$


vlastní tíha nosníku je uvažována přímo vy výpočtu vnitřnch sil

Counted reactions (counted with software FIN 3D)

 $R_{Sd} = V_{Sd} = 97,37 \text{ kN}$

Counted bending moment (counted with software FIN 3D)

 M_{Sd} = 117,8200 kNm

Horizontal module needed

 $W_{min} = M_{Sd}/f_{yd}$

f_{vd}= 308,7 Mpa (steel S355)

W_{min}= 117,82*10^3/308,7

W_{min}= <u>381,6650</u> mm³

Profile design	IPE 270		
m=	36,1	kg/m	
A=	4594	mm ²	
$W_y=$	429000	mm ³	
$W_{pl,y}=$	484000	mm ³	
I _y =	57900000	mm ⁴	
$A_{vz}=$	2214	mm ²	
b=	135	mm	
t _f =	10,2	mm	
h=	270	mm	

Recognition of the designed profile

Plastic flexural loading capacity steel-concrete section co-width cof oncrete slab

concrete C25/30 is used thickness d=

60

mm

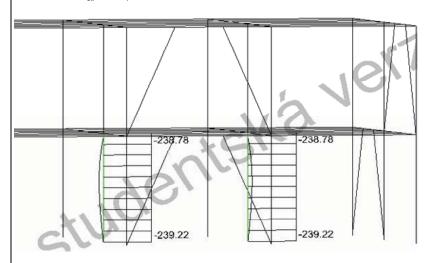
b_{eff}= 2b_{e1} f_{ck}= 25 Mpa 50 · mm b_{eff}= L/4 $f_{cd} = 0.85 f_{ck} / \gamma_c = 0.85 25 / 1.5 =$ 14.1667 Mpa presumption of a neutral axis location in the concrete slab (concrete in the rib is neglected) balance of internal forces N_a= N_c $A_a f_{vd} = x b_{eff} f_{cd}$ 4594*308,7= x*937,5*14,167 x = (4594*308,7)/(937,5*14,167)x= **106,780** mm ->It is apparent that the neutral axis lies outside the concrete slab presumption of a neutral axis location in a steel profile balance of internal forces $N_a = N_c + 2N_{a1}$ $N_a = A_s f_{vd} = 4594*308,7=$ 1418,168 kN $N_c = d * b_{eff} * f_{cd} = 60*937,5*14,167 =$ 796,875 kN N_{a1} = $(N_a-N_c)/2$ = (1418,1678-796,875)/2 **310,646** kN presumption of a neutral axis position in the upper flange of steel profile $x = N_{a1}/(f_{vd}^*b)$ x = 310,646*1000/(308,7*135)x= **7,454** mm 10,2 mm -->The neutral axis is located in the upper flange of steel profile Torque loading capacity $M_{pl,Rd} = N_c^* r_c + N_{a1}^* r_{a1}$ $M_{pl,Rd} = 796,875*(135+110-30)+310,6464*(135-3,727)$ M_{pl.Rd}= **212,108** kNm M_{Sd}= **117,820** kNm ->Girder complies Shear carrying capacity $V_{pl,Rd} = A_{VZ} f_{vd} \sqrt{3}$ $V_{pl.Rd} = 2214*308,7/\sqrt{3}$ V_{pl.Rd}= **394,597** kN $V_{Sd} = 50.66 \text{ kN}$ ->Girder complies Limit the applicability of state - deflection (all load) 12,464 kN/m $g_k+q_k=25,490$ 13,026 kN/m $\delta = (5/384) * (g_k*L^4)/(EI_v)$ $\delta = (5/384)*(12,464*4750^4)/(210000*57900000)$ δ= **13.896** mm < δ_{lim} = L/250= 19 mm (incidental load) $\delta_2 = q_k/g_k * \delta$ δ_2 = 0/25,49*13,896 $\delta_2 = 7,101$ mm $\delta_{lim} = L/300 =$ 15.833 mm Summary of all girders in the structure and their weight number of girders 8 ks

m= 36,1 kg/m

I= 7,5 m

 $m_c = 2166 \text{ kg}$

weight of one girder


lenght of one girder

weight summary

Design of a column

(there is used steel S 355 for the design)

Loading force

Profile design

square tube 120x120x5 17,82 kg/m 2270 mm² 46,8 mm 46,8 mm

λ_1 = 93,9 $\sqrt{(235/355)}$ = 76,399

$$f_{yd} = 1$$

 $f_{yd} = 308,7 \text{ Mpa}$
(steel S355)

křivka

souč. vzpěrnosti vzpěrnosti

Recognition of the designed profile

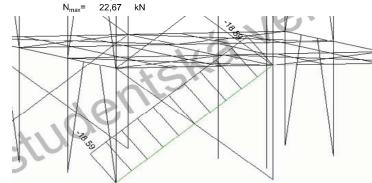
(buckling length)

$$L_{cr,y} = L_{cr,z} = 3.0 \text{ m}$$

 $\lambda_y = L_{cr,z}/i_y = 3000/46.8 = 64,10256$

$$\lambda_z = L_{cr,y}/i_z = 3000/46,8 = 64,10256$$

buckling pressure loading capacity


Summary of all columns in the structure and their weight

number of columns	n=	24	ks
weight of one column	m=	17,82	kg/m
lenght of one column	=	3	m
weight summary	m _c =	1283,04	kg

Design of reinforcements

(there is used steel S 355 for the design)

Normal force for the design of reinforcements

Profile design

	TR 38x4,0		
m=	4	kg/m	
A=	509	mm^2	
i=	14.4	mm	

Design of connecion

srews
 M12
 5.6

 spacing

$$e_1$$
=
 30
 mm

 e_2 =
 25
 mm

 e_1 =
 40
 mm

loading capacity of the shear

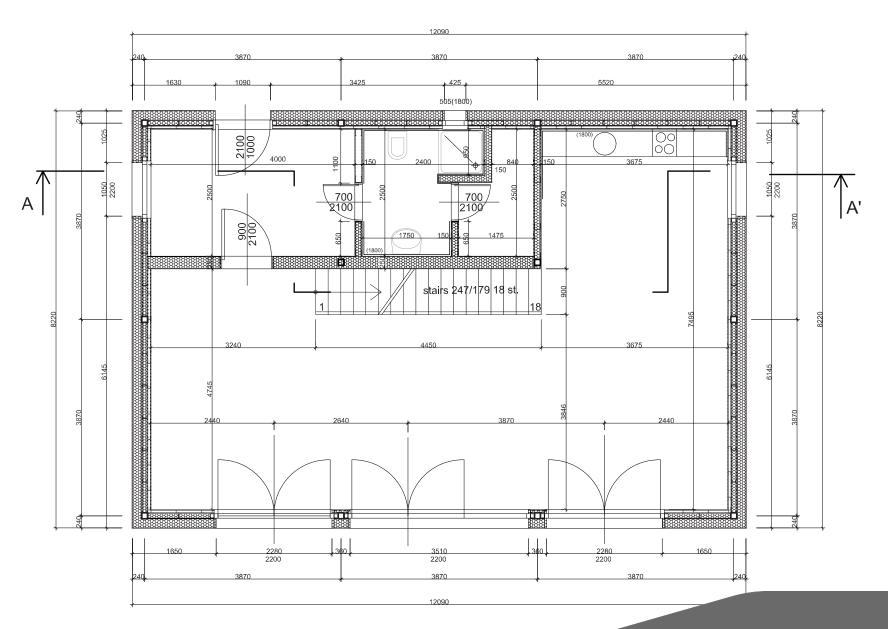
$$F_{v,Rd} = 17,4 \text{ kN}$$

(single-shear, shear in the screw-thread)

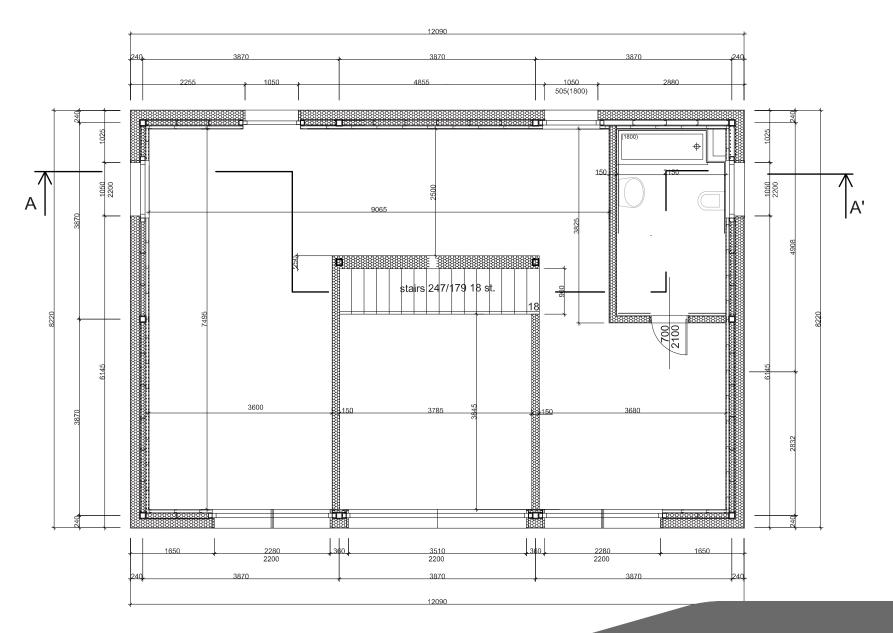
loading capacity of the deformation

number of screws

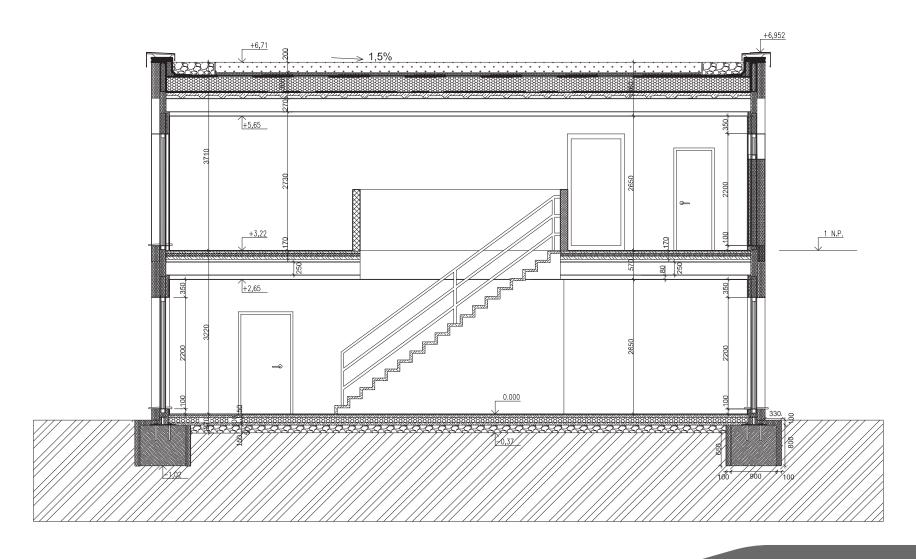
=> proposal 2 screws M12 5.6

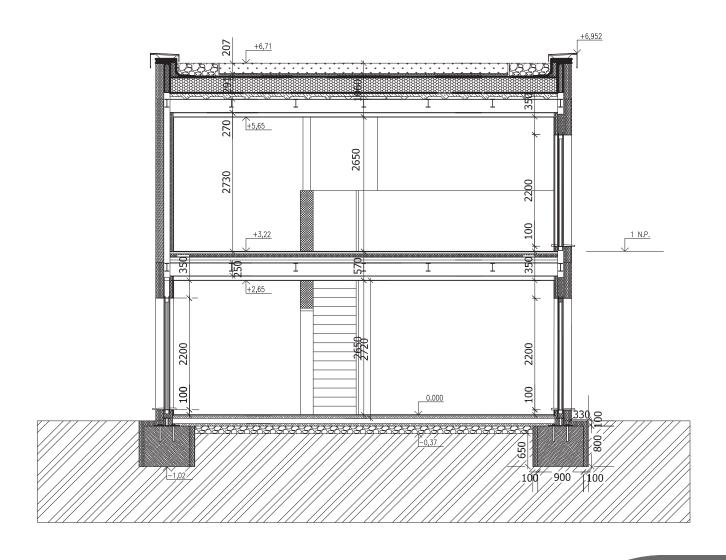

recognition of the element itself

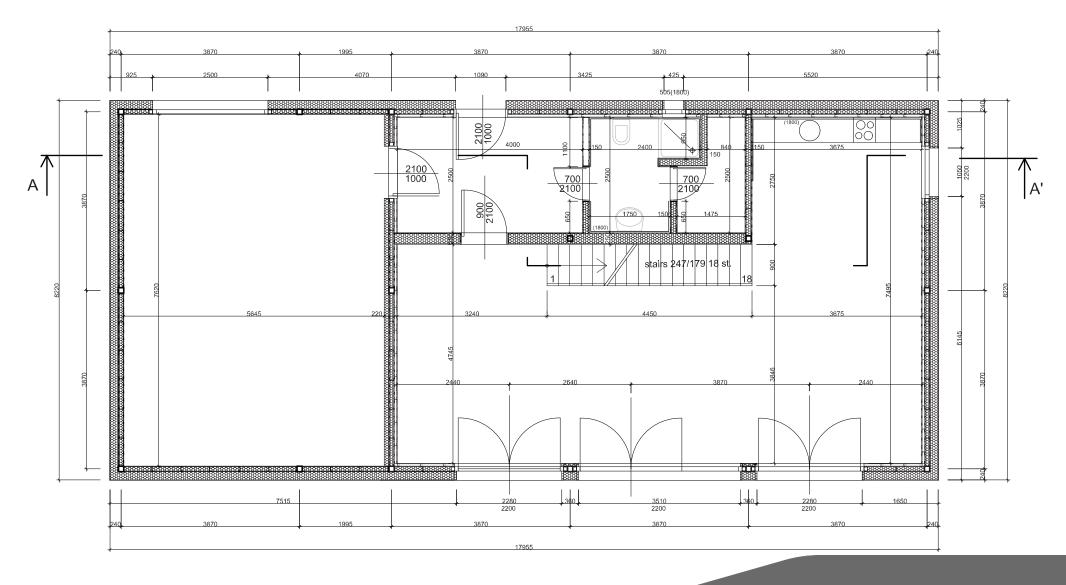
buckling pressure loading capacity

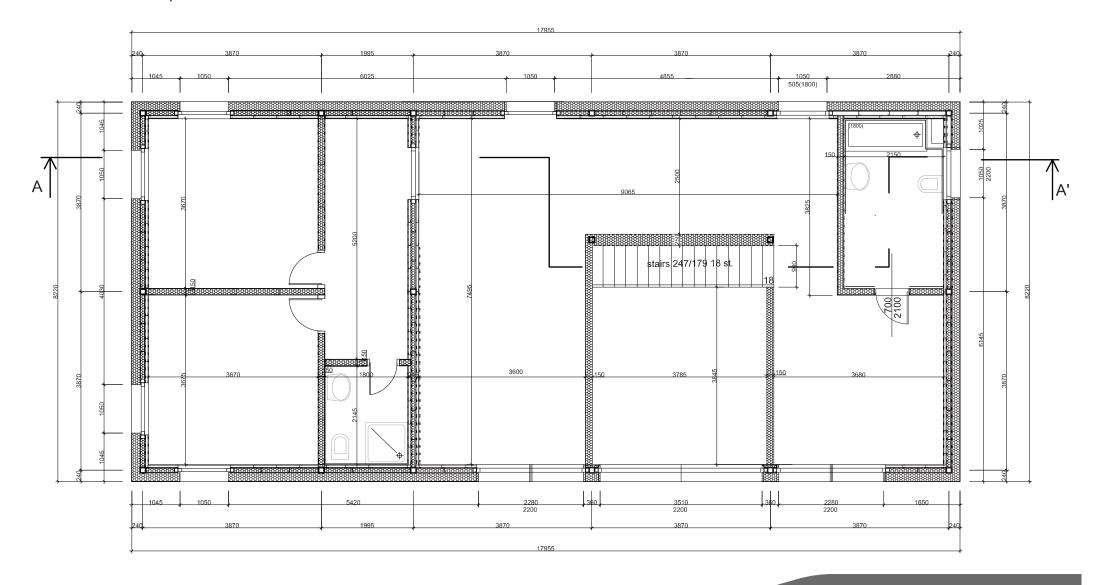

N_{b.Rd}= 27,65458 kN

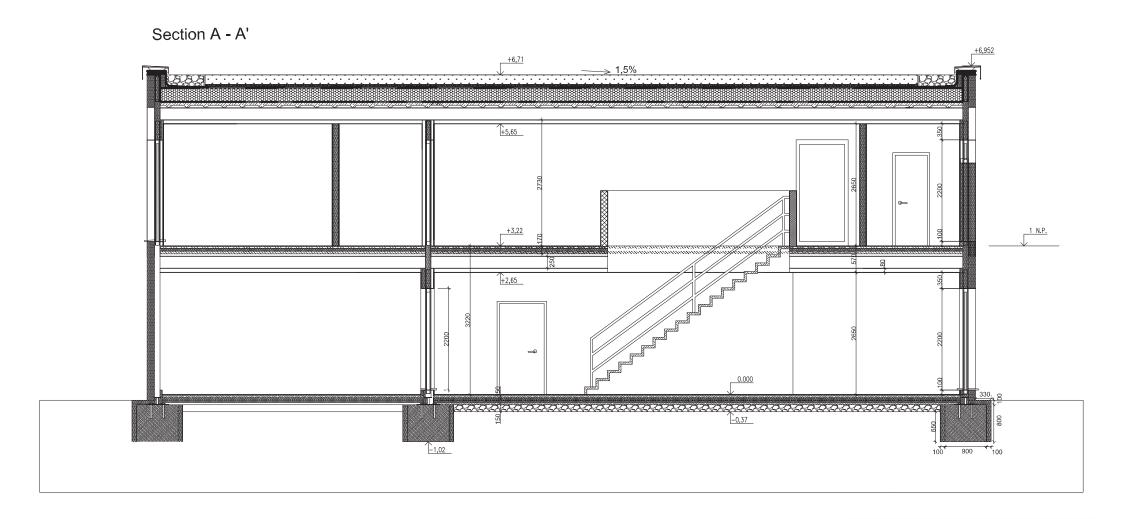
Summary of all reinforcements in the structure and their weight				
number of reinforcements		n=	12	ks
weigh	m=	4	kg/m	
lenght of one reinforcement I=			4,8	m
	weight summary	m _c =	230,4	kg
weight summary of all elements m _{tot} = 5711,19			kg	


Ground plan 1st floor

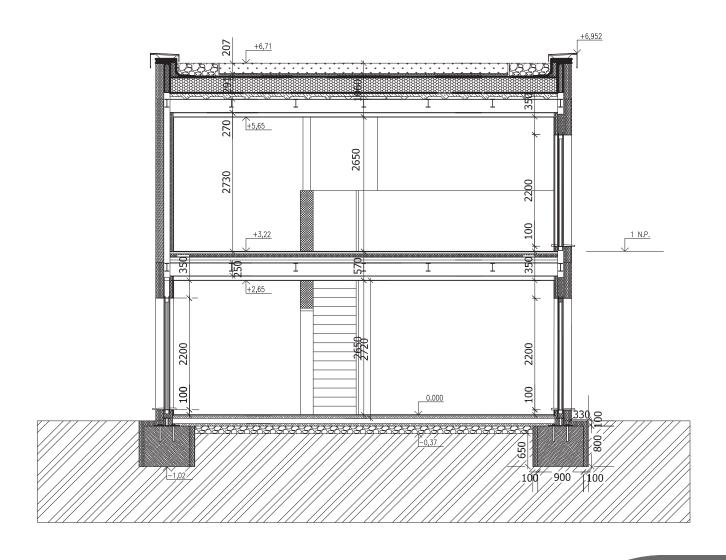

Ground plan 2nd floor


Section A - A'

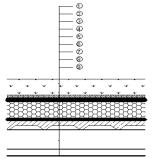

SECTION B - B'

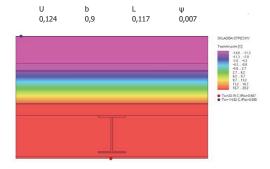


Ground plan 1st floor



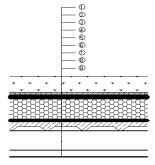
Ground plan 2nd floor


SECTION B - B'

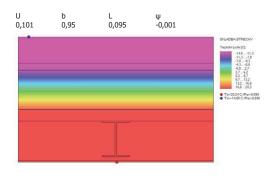

BUILDING PHYSICS

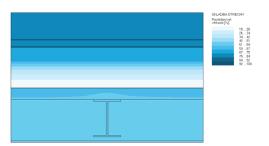


STRUCTURE OF THE ROOF THICKNESS THERMAL INSULATION 240 mm

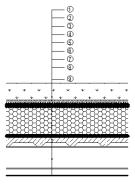


- @ MATTING
- @ ASPHALT BELTS
- ④ CATCHMENT PLATES-THERMAL INSULATION THICKNESS 240 mm ⑤ VAPOR BARRIERS
- © CONCRETE SLABS THICKNESS 110 mm
- TRAPEZOIC METAL SHEETS
- ® STEEL BEAM PROFILE IPE 270
- @ PLASTERBOARD CEILING





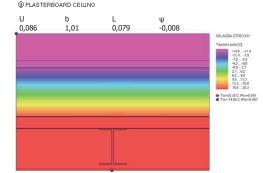
STRUCTURE OF THE ROOF THICKNESS THERMAL INSULATION 300 mm

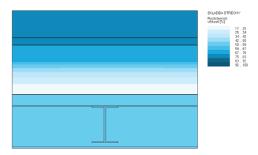


- @ ASPHALT BELTS
- ④ CATCHMENT PLATES-THERMAL INSULATION THICKNESS 300 mm ⑤ VAPOR BARRIERS
- © CONCRETE SLABS THICKNESS 110 mm
- TRAPEZOIC METAL SHEETS
- ® STEEL BEAM- PROFILE IPE 270 @ PLASTERBOARD CEILING

STRUCTURE OF THE ROOF THICKNESS THERMAL INSULATION 360 mm

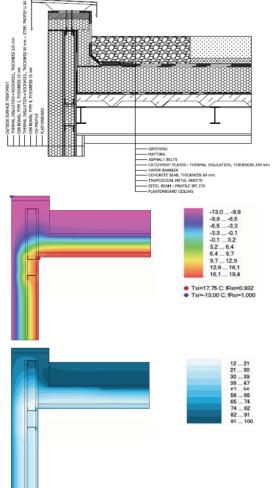
① GREENING

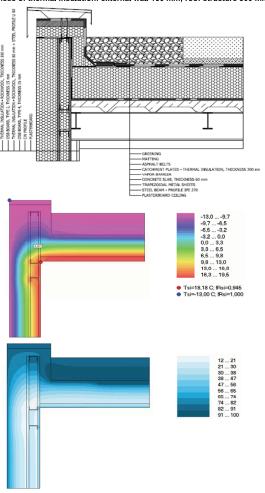

3 ASPHALT BELTS


© VAPOR BARRIERS

@ CONCRETE SLABS THICKNESS 110 mm

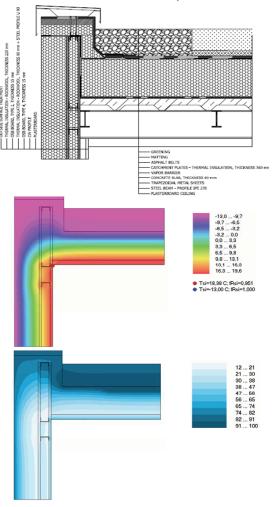
TRAPEZOIC METAL SHEETS


® STEEL BEAM- PROFILE IPE 270

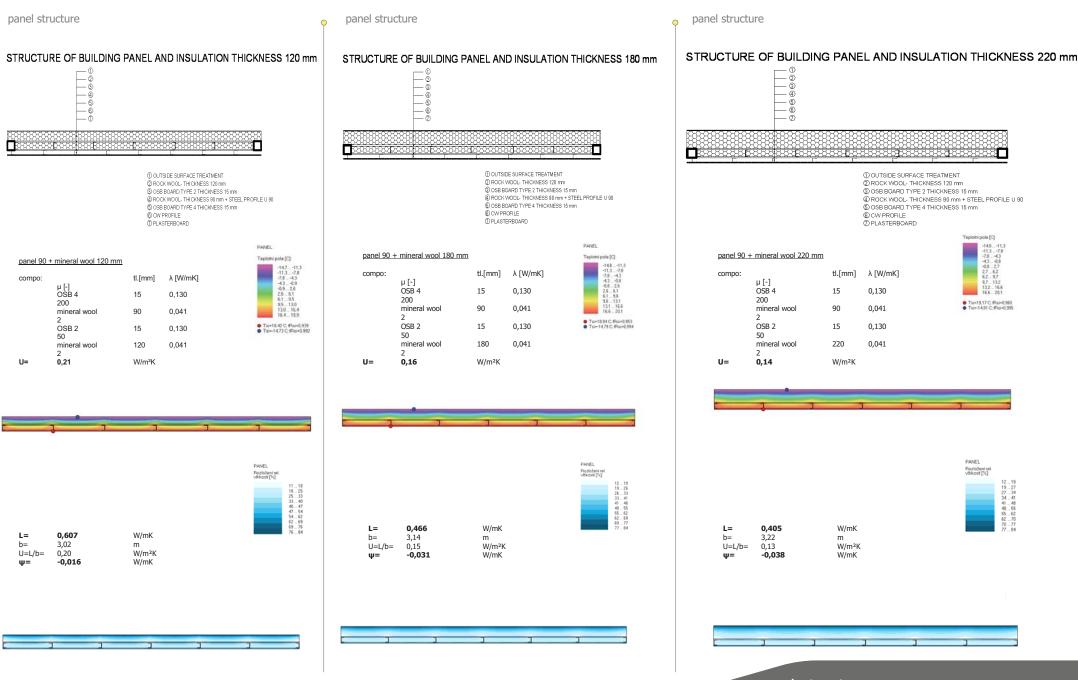


roof structure field of temperature and humidity growing steel house - family rules detail of attic detail of attic detail of attic

Detail of attic Thickness of thermal insulation: external wall 120 mm; roof structure 240 mm



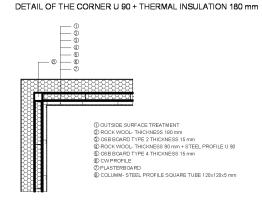
Detail of attic
Thickness of thermal insulation: external wall 180 mm; roof structure 300 mm



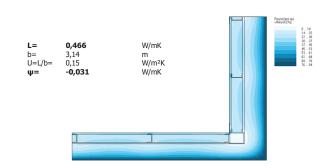
Detail of attic

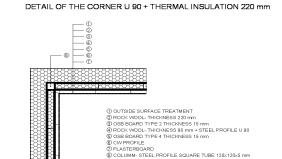
Thickness of thermal insulation: external wall 220 mm; roof structure 360 mm

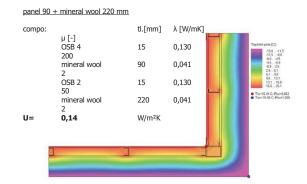
attic field of temperature and humidity growing steel house - family rules



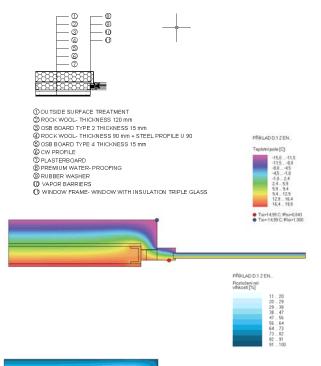
panel structure field of temperature and humidity growing steel house - family rules wall corner wall corner



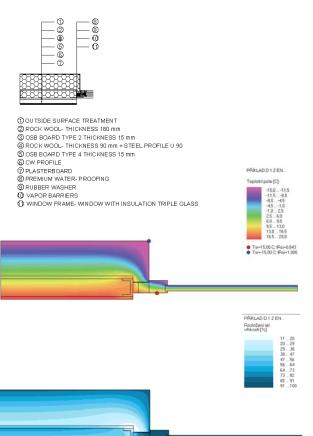




wall corner

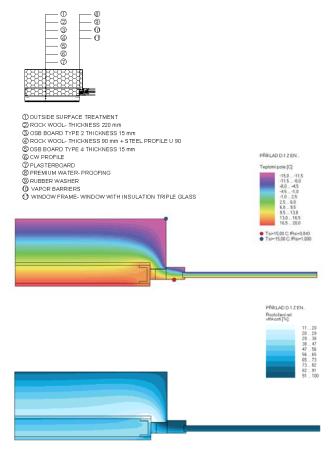


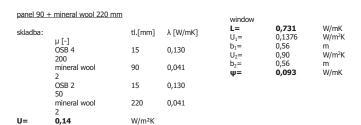
wall corner field of temperature and humidity growing steel house - family rules window flanning


DETAIL OF CONNECTION OF THE WINDOW THICKNESS OF THE THERMAL INSULATION 120 mm

panel 90 +	mineral wool 120 mm			window L=	0,758	W/mK
skladba:	μ[-]	tl.[mm]	λ [W/mK]	U ₁ = b ₁ =	0,2064 0,16	W/m²K m
	OSB 4 200	15	0,130	U ₂ = b ₂ =	0,90 0,56	W/m²K m
	mineral wool	90	0,041	υ ₂ = ψ=	0,081	W/mK
	OSB 2 50	15	0,130			
	mineral wool	120	0,041			
U=	0,21	W/m²K				

window flanning

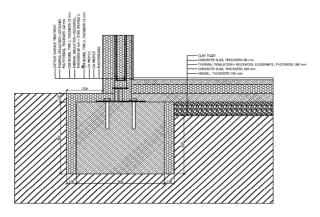

DETAIL OF CONNECTION OF THE WINDOW THICKNESS OF THE THERMAL INSULATION 180 mm

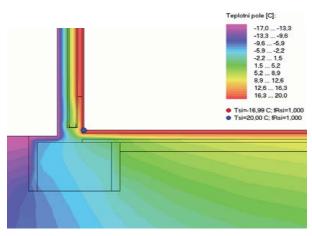


panel 90	+ mineral wool 180 mm			window L=	0,739	W/mK
skladba:	μ[-]	tl.[mm]	λ [W/mK]	U ₁ = b ₁ =	0,1584 0,56	W/m²K m
	OSB 4 200	15	0,130	$U_2 = b_2 =$	0,90 0,56	W/m²K m
	mineral wool 2	90	0,041	ψ=	0,089	W/mK
	OSB 2 50	15	0,130			
	mineral wool 2	180	0,041			
U=	0,16	W/m ² K				

window flanning

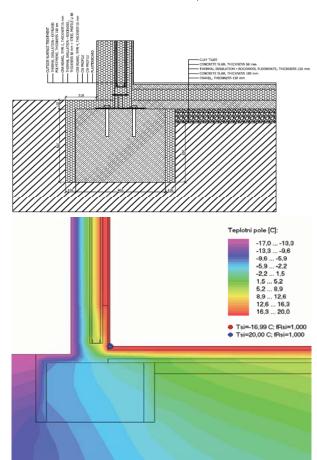
DETAIL OF CONNECTION OF THE WINDOW THICKNESS OF THE THERMAL INSULATION 220 mm

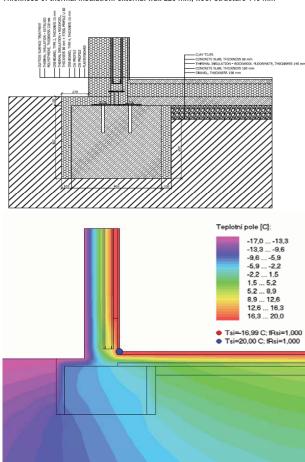

window flanning field of temperature and humidity growing steel house - family rules foundation


foundation

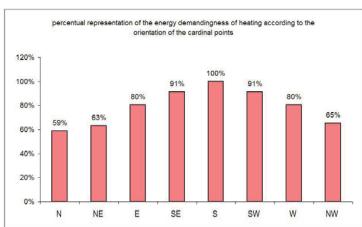
foundation

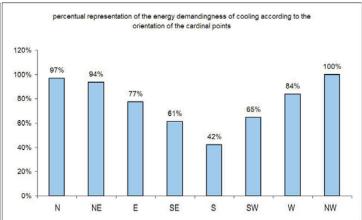
Detail of placing on the foundation

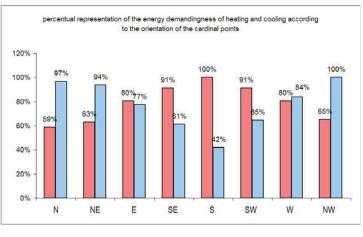

Thickness of thermal insulation: external wall 120 mm; floor structure 100 mm

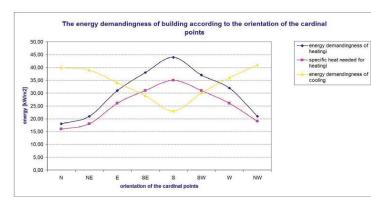

Detail of placing on the foundation

Thickness of thermal insulation: external wall 180 mm; floor structure 120 mm

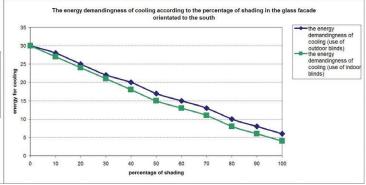


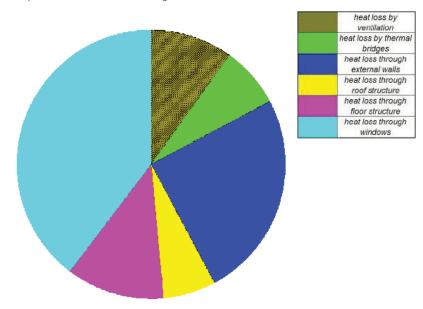

Detail of placing on the foundation


Thickness of thermal insulation: external wall 220 mm; floor structure 140 mm

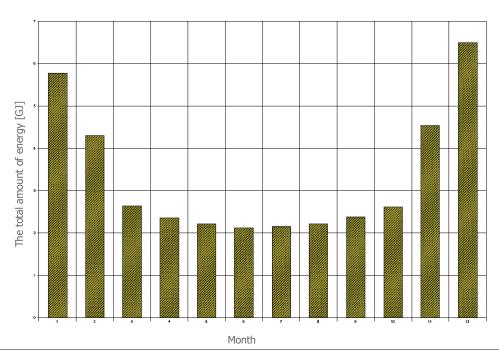



placing on the foundation field of temperature and humidity growing steel house - family rules

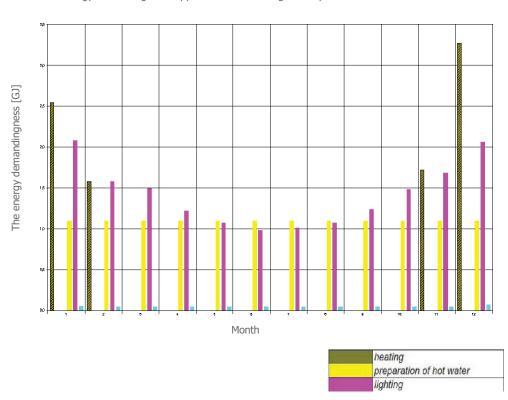


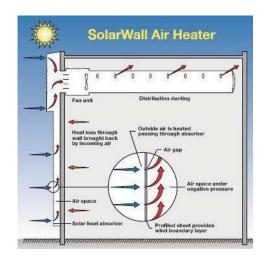


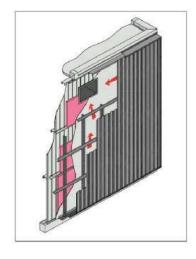
The energy demandingness of building according to the orientation of the cardinal points								
orientation of the main entrance	N	NE	E	SE	S	SW	W	NW
energy demandingness of heating	18,00	21,00	31,00	38,00	44,00	37,00	32,00	21,00
specific heat needed for heating	16,00	18,00	26,00	31,00	35,00	31,00	26,00	19,00
the total annual need for heat [GJ]	7,30	8,33	12,10	14,54	16,60	14,34	12,43	8,82
energy demandingness of cooling	40,00	39,00	34,00	29,00	23,00	30,00	36,00	41,00

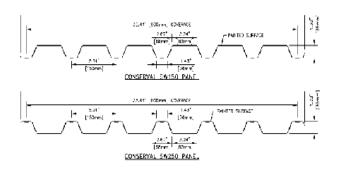

orientation of the main entrance	N	NE	E	SE	S	SW	W	NW
January	3583,30	3255,40	1712,10	1294,70	921,60	1379,50	1562,00	2948,60
February	4135,20	3876,60	2373,10	1974,60	1484,40	2069,60	2407,70	3747,80
May	6249,20	5884,40	4357,60	3485,10	2614,70	3557,00	4450,40	5844,50
April	7438,00	6817,80	5859,90	4546,70	3572,30	4823,40	6213,20	7318,20
May	7983,80	8037,00	7520,00	6517,40	4950,20	7000,60	8379,10	8800,00
June	7360,80	7425,70	7230,60	6567,50	5307,80	7738,00	9018,40	8708,20
July	7699,10	7952,80	7481,10	6608,50	4896,70	6887,10	8079,70	8399,30
August	8011,80	7970,60	7055,60	5699,60	4200,30	5896,40	7282,40	8167,30
September	7256,50	6626,70	5199,70	3793,30	2877,00	3829,40	5213,50	6550,90
October	5626,40	5264,40	3862,50	2436,90	2009,60	2285,70	3214,00	4218,10
November	2646,70	2383,40	1519,40	1094,30	972,20	1082,10	1372,30	2035,50
December	2102,70	1589,30	1046,90	883,30	685,10	936,90	1069,50	1785,9
Summary [MJ]	70093,50	67084,10	55218,50	44901.90	34491,90	47485,70	58262,20	68524,3

The energy demandingness of cooling according to the percentage of shading in the glass facade orientated to the south											
the percentage of shading [%]	0,00	10,00	20,00	30,00	40,00	50,00	60,00	70,00	80,00	90,00	100,00
the energy demandingness of cooling (use of outdoor blinds) [kWh/m ²]	30,00	28,00	25,00	22,00	20,00	17,00	15,00	13,00	10,00	8,00	6,00
the energy demandingness of cooling (use of indoor blinds) [kWh/m ²]	30,00	27,00	24,00	21,00	18,00	15,00	13,00	11,00	8,00	6,00	4,00


Specific heat loss of the building




The total amount of energy supplied into the building monthly



The energy demandingness supplied into the building monthly

SolarWall® system integrated into a wall and connected to interior fan

 ${\bf SolarWall} \\ {\bf \mathbb{R}} \ {\bf system} \ {\bf mounted} \ {\bf over} \ {\bf metal} \ {\bf wall} \\$

SolarWall® profiles

•

SolarWall®

The SolarWall® technology is a solar air heating system that uses solar energy as fuel to heat or ventilate indoor spaces in new or retrofit construction. Perforated collector panels are installed several inches from an appropriate wall, creating an air cavity. Sunlight heats the solar collector surface and ventilation fans create a negative pressure in the air cavity, drawing in solar heated air through the perforations in the panel. A connection to an HVAC intake allows air to be preheated before entering the air handler, reducing the load on the conventional heater. Heated air is then distributed into the building through the existing HVAC system or alternately, with separate air makeup fans and perforated ducting.

PREPARATORY WORK

Deliver products in manufacturer's original, unopened, undamaged containers with identification labels intact. Store materials protected from exposure to harmful environmental conditions and at temperature and humidity conditions recommended by the manufacturer. Verify that site conditions are acceptable for installation. Do not proceed with installation until unacceptable conditions are corrected.

MFTHODS

The SolarWall system is generally installed in a manner similar to that of other metal facades except that it is attached 150 - 250 mm (6" - 10") from the wall to create the cavity for collecting the solar heated air. It can be installed over or around existing wall openings, and if installed over masonry, the clip and support system can usually be fastened anywhere on the wall. If the main wall is a metal wall with support bars or girts spaced 1.2 - 1.8 m (4' - 6') apart, the supports for the solar wall panels must be connected to the structural supports and not to the metal sheets. Panels can be mounted with corrugations positioned vertically or horizontally on walls and facias, and positioned vertically on roofs. If required, additional fans and air distribution equipment can be installed using standard practices. Installation manuals and project-specific installation drawings are available. BUILDING CODES Installation must comply with the requirements of all applicable local, state and federal code jurisdictions.

ENVIRONMENTAL CONSIDERATIONS

SolarWall is a renewable energy system

that has significant environmental benefits: • Each SolarWall system supplies 1.5 - 3.5 GJ/m2 (1.5 - 3.5 therms/ft2) of heat per year using solar energy • Delivers solar collection efficiencies as high as 80% • Reduces annual CO2 production by 200 kg/m2 (40 psf) of collector when displacing natural gas heating • SolarWall metal components contain recycled material and are recyclable at the end of their life cycles • Solar collectors heat fresh air to improve indoor air quality Project with SolarWall technology may qualify for up to 6 LEED credits in "Renewable Energy," "Optimizing Energy Performance", "Improved Ventilation" and other LEED categories.

Color Chart

wall integration of solarwall system growing steel house - family rules

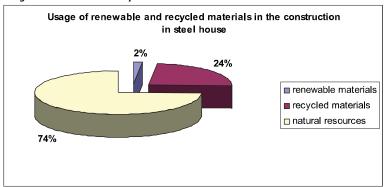
ENVIRONMENTAL ANALYSIS

SBTool CZ is a comprehensive methodology for evaluating the quality of buildings (classification of building's "sustainability"). It contains less than 50 criteria in three groups (environmental, economic and social). Social criteria in themselves include parameters related to the technical quality of buildings. This methodology is designed to assess buildings for housing and office buildings at the design / concept and the operational phase.

Methodology SBToolCZ derives from the traditional three areas of sustainable development: environmental, social and economic. The approach is identical to most groovy methodologies used in developed countries. Every building with its surroundings is defined by many characteristics (eg, floor space, energy consumption, availability of services, etc.) and constants (eg, emission factors). These two groups of magnitudes enter into the evaluation algorithm, which is included in the criteria worksheets. Here is the criterion evaluated and scored on the basis of benchmarks (criteria limits), and this is done on the scale from -1 to 5. The value of 5 corresponds to the best available technology (BAT), 3 correspond with current best experience, 0 indicates the normal region and possibly meet the legal requirements and the negative value indicates a condition below the possible boundary that is accepted in a given locality, or it indicates a failure (in many cases not acceptable) of certain requirements, such as breach of standards valid in the region. In this we can see that benchmarks provide a transfer of each criteria value (that is exactly quantifiedor verbally expressed) on the point scale from -1 to 5. The result points of all the criteria are then multiplied by weights, weighted points of each criteria will be summarized and give the overall result.

SBTool is one of the possible ways how to evaluate the sustainability of buildings and can thus determine the potential how to improve and optimize the design of building.

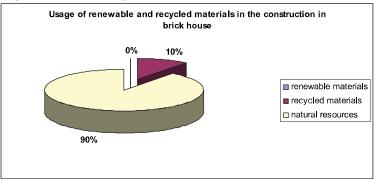
CLASS OF	Marks				
SUSTAINABILITY	FROM	то			
Α	4,5	5,0			
В	3,5	4,5			
С	2,5	3,5			
D	1,5	2,5			
E	0,5	1,5			
F	-0,5	0,5			
G	-1	-0,5			

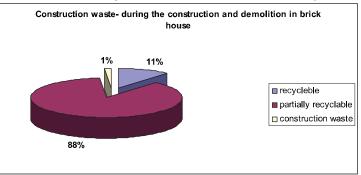

Environment		project	steel		masonr	у
Climate change			Marks	Summary of marks	Marks	Summar of marks
	Operating emissions CO _{2,eky.}	12,5%	3,73	0,466	3,74	0,467
	Embodied emissions CO2.ekv.	3.5%	-1,00	-0,035	-1,00	-0,035
Air Quality	Embariou di Maciono de Lijerni	0,0 10	1/00	0,000	2,00	0,000
<u> </u>	Operating emissions SO _{2,ekv}	4,6%	4,81	0,219	4,82	0,219
	Operating emissions NO _x	4,6%	4,31	0,196	4,31	0,196
Biodiversity	γ ο μοι στοιοί στο χ	.,,,,,,,	.,	0,200	-,	-,
	Proportion of area with the original nature character	3,6%	3,08	0,111	3,08	0,111
Usage of resour	ces and waste					
	Annualized non- renewable primary energy used for facility operations	7,7%	3,79	0,291	3,79	0,291
	Annualized non- renewable primary energy					
	embodied in construction materials	3,8%	-1,00	-0,038	-1,00	-0,038
	Usage of renewable and recycled materials in					
	the construction	6,2%	4,00	0,248	3,00	0,186
	Construction waste- during the construction	2.60/	1.00	0.026	1.00	0.026
	and demolition	3,6%	-1,00	-0,036	-1,00	-0,036
		50,0%		1,421		1,361
Social aspects						
Health and qual	ity of indoor environment	F 20/	F 00	0.200	F 00	0.200
	Day lighting Acoustic comfort	5,2% 6,5%	5,00 3,00	0,260	5,00 3,00	0,260
	Thermal comfort	6,8%	5,00	0,195	5,00	0,195
	Indoor air quality	5,4%	3,00	0,162	3,00	0,340
Availability	Thuoor all quality	J, T /0	3,00	0,102	3,00	0,102
Availability	Access for disabled people	3,3%	3,00	0,099	3,00	0,099
Security	Transport and and property	2,2 / 0	2,00	0,000	5,55	0,000
	Security of building	4,4%	1,00	0,044	1,00	0,044
Adaptability and		,			,	,
	Adaptability	3,4%	5,00	0,170	-1,00	-0,034
		35,0%		1,270		1,066
Economy						
LCC						
·	Life cycle cost	5,3%	3,00	0,158	3,00	0,158
Support of local						
	Usage of local products	3,6%	0,00	0,000	0,00	0,000
Externalities	Two are	2.50/				
	Innovative approach	2,5%	3,00	0,074	3,00	0,074
B: 1	Availability of detailed and operating documentation	1,8%	3,00	0,053	3,00	0,053
Rizika	A 1	2.00/	0.00	0.000	0.00	0.000
	Autonomy of operation	2,0%	0,00	0,000	0,00	0,000
		15,0%		0,284		0,284
				3,00		2,70

<u>Marks</u>	
-1	Inappropriate solutions
0	Admissible solutions
2	Good colutions

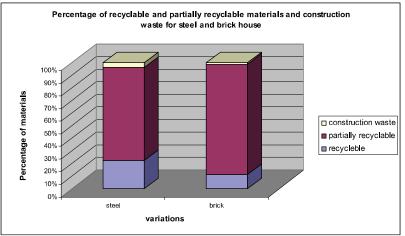
5 ...The best solutions

environmental analysis growing steel house - family rules


Usage of renewable and recycled materials in the construction in steel house


Construction waste- during the construction and demolition in steel house


Usage of renewable and recycled materials in the construction in steel house



Construction waste- during the construction and demolition in masonry house

Comparison of two construction and material variations

Advantages:

- 1) low cost housing for wide clientele
- 2) attractive appearance
- 3) functionality and variability of the building
- 4) the house changes and grows according to the social and financial needs of the family
- 5) it can be built in various areas
- 6) it can be built as low energetic or passive house
- 7) If is it passive it can get donations from the government
- 8) Quick assembling and disassembling
- 9) Prefab components
- 10)Can be used recycled steel
- 11)Most of used materials could be recycled

Disadvantages:

- 1) not fully traditional material for building houses in the Czech Republic
- 2) relatively higher cost of delivery on long distances
- 3) unification (can be both advantage or disadvantage)

Future plans:

- 1) Completion of construction plans
- 2) Final solution of problematic details of the structure
- 3) Overall balance of investments
- 4) Solving of building services (heating, cooling system; ventilation water distribution etc.)
- 5) Total usage of materials
- 6) Evaluation of environmental impacts
- 7) Analysis of acoustic matters
- 8) Calculation

THE GROWING STEEL HOUSE TEAM

Teachers / concultations: františek wald - head; karel mikeš – manager; petr hájek - sustainability building concept; jan tywoniak - building energy concept

Students / design: tereza pavlů - structural design, environmental analysis; petr schorsch - structural design; lukáš turek - architectural concept and solution;

Students /collaboration on the text part : petr schorsch - socio-economical evaluation, tomáš horálek - socio-economical evaluation; jakub holeček - socio-economical evaluation; pavel jenýš - traditional housing concept; rostislav mazáč - socio-economical evaluation; zdeňka staňková - traditional housing concept; oldřich švec - socio-economical evaluation; kristina trnková - traditional housing concept; zuzana šulcová - web page;

