

construction system growing steel house - family rules

EX - composition

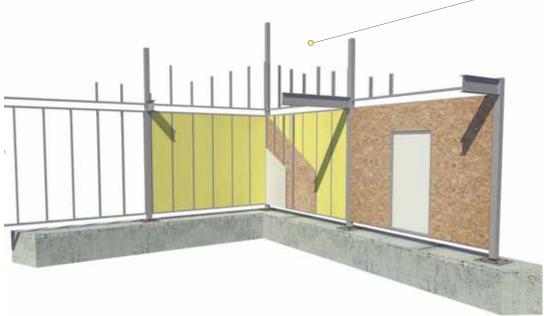
OSB panel 15 mm

mineral wool 120 - 220 mm

air space 50 mm

surface conditioning

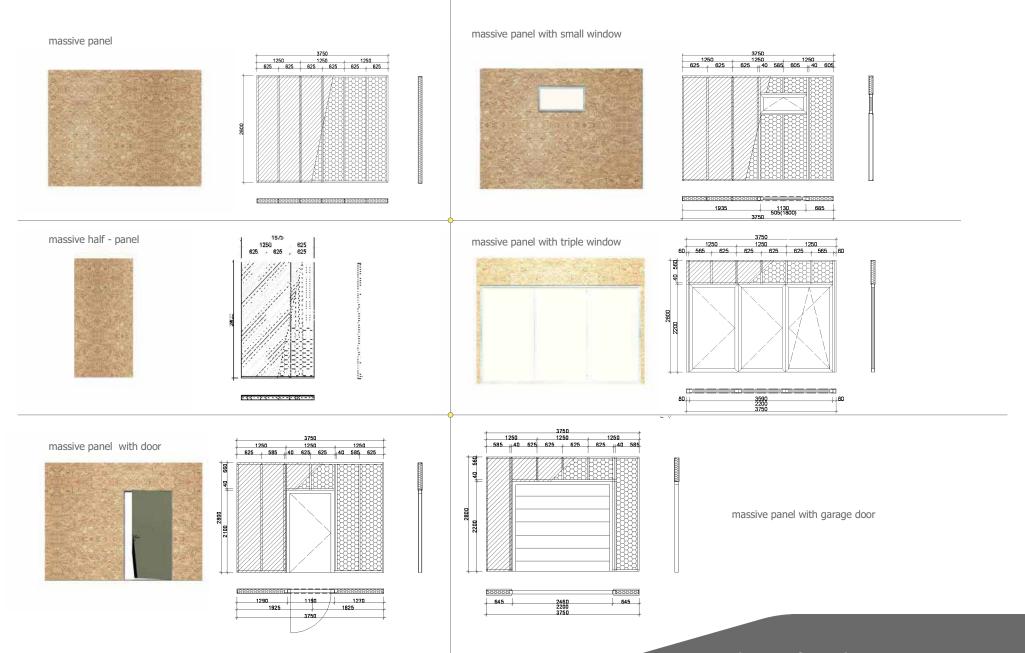
IN - composition

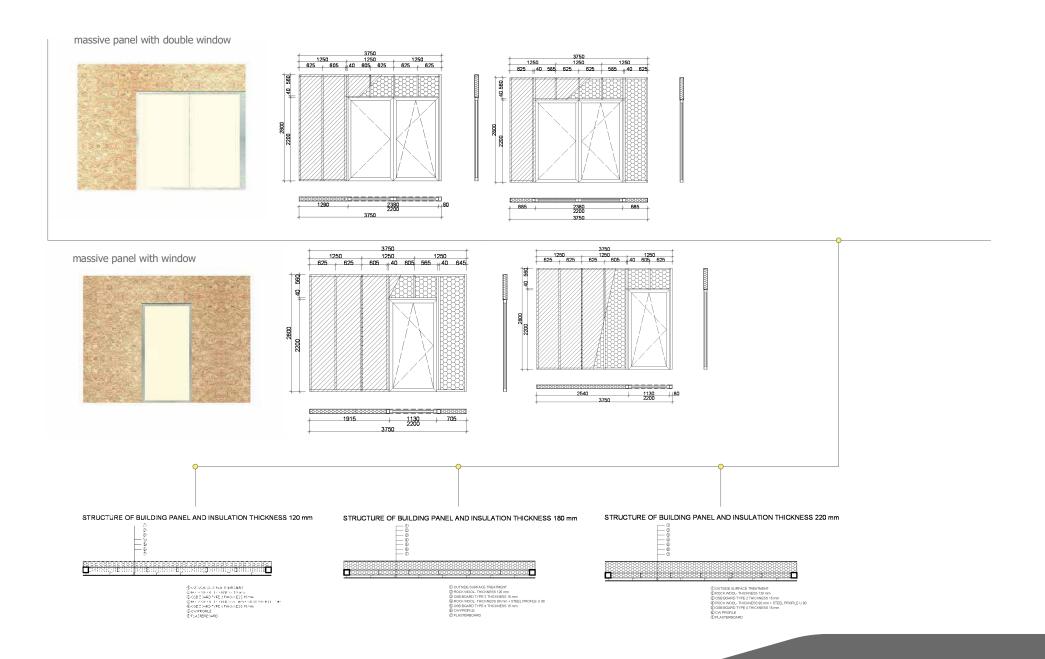

steel shape C 90/40 + mineral wool

OSB panel 15 mm

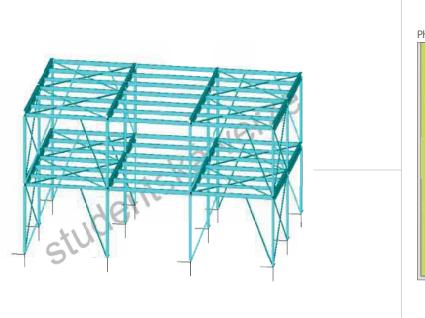
air space 50 mm

gypsum plasterboard 13 mm


surface conditioning

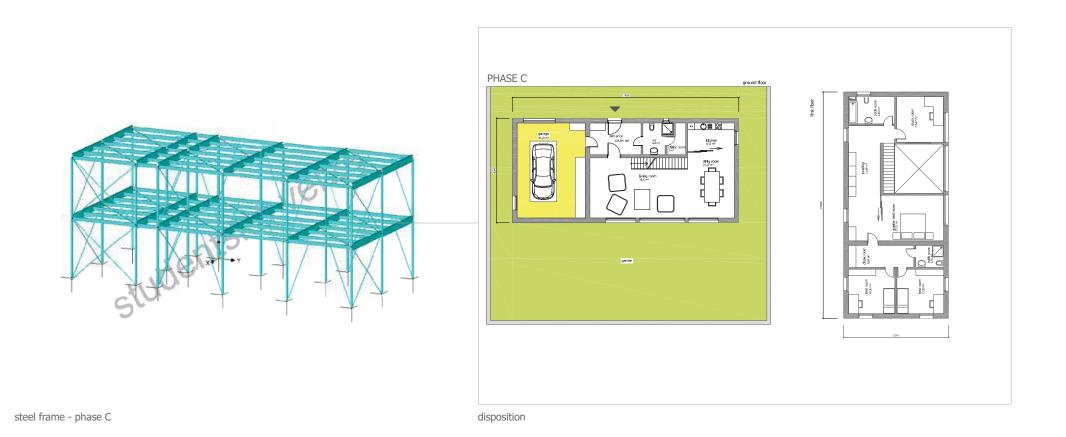


construction system - composition growing steel house - family rules


construction system - external walls growing steel house - family rules



STATIC CALCULATION



steel frame - phase A,B

disposition

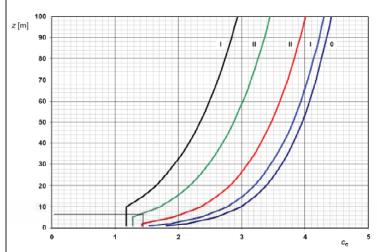
Wind load

Basic speed of the wind

```
\begin{split} v_b = & C_{dir}^* C_{season}^* v_{b,0} \\ & C_{dir}^= 1,0 \text{ ( coefficient - wind direction )} \end{split} \qquad C_{season} = 1,0 \text{ ( coefficient - season )} \end{split}
```

 $v_{b,0}$ =27,5 m/s (estimated from the map of wind speed, ČSN EN 1991-1-4, general location)

v_b=1,0*1,0*27,5=**27,5 m/s**


basic dynamic pressure of the wind

$$q_b=1/2*p*v_b^2(z)$$

 $p=1,25 \text{ kg/m}^3$ (density of the air)
 $v_b=27,5 \text{ m/s}$
 $q_b=1/2*1,25*27,5^2=472,6563 \text{ N/m2}$

maximal dynamic pressure

$q_p = c_e(z) * q_b$

 c_e =1,4 (estimated as a function of height beyond terrain and the terrain cathegory, picture 4.2, ČSN EN 1991-1-4)

Obrázek 4.2 – Součinitele expozice $c_e(z)$ pro $c_0 = 1,0$ a $k_1 = 1,0$

terrain cathegory - III (areas equally covered by vegetation or buildings) q_0 =472,6563 N/m²

q_p=1,4*472,6563=**661,7188 N/m²**

wind pressure on the surface of the construction

$$w_e = q_p(z)^* C_{pe}$$

 $q_p = 661,719 \text{ N/m}^2$

pe :

area	wnd orientation θ=0°	wnd orientation θ=90°
Α	-1,2	-1,2
В	-1	-1,4
С	-0,5	-0,5
D	0,75	0,8
E	-0,4	-0,5
F	-1,2	-1,2
G	-0,8	-0,8
Н	-0,7	-0,7
	0,2	0,2

 $w_e [N/m^2]$

area	wind orientation	wind orientation
Α	-794,063	-794,063
В	-661,719	-926,406
С	-330,859	-330,859
D	496,289	529,375
E	-264,688	-330,859
F	-794,063	-794,063
G	-529,375	-529,375
Н	-463,203	-463,203
1	132,344	132,344

conversion of the presure to purlins θ=0°

purlin	measure 1	measure 2	w _e 1	q [kN/m′]
1-2 field	1,250	0,000	-794,063	-0,993
3. field	1,250	0,000	132,344	0,165
1-2 border field	0,625	0,000	-794,063	-0,496
3. border field	0.625	0.000	132.344	0.083

conversion of the presure to purlins θ=90°

purlin	measure 1	measure 2	w _e 1	q [kN/m′]
2-5 all fields	1,250	0,000	-794,063	-0,993
6. all fields	1,250	0,000	132,344	0,165
1 kraj všechny pole	0,625	0,000	-794,063	-0,496
7 kraj všechny pole	0,625	0,000	132,344	0,083

conversion of the pressure on the fixtures of enclosure wall panels to columns θ =0°

fixtures	distance 1	distance 2	w _e 2	Q [kN]
face wall	3,250	3,000	496,289	1,210
back wall	3,250	3,000	-264,688	-0,645
1. field	3,250	3,000	-794,063	-1,936
2. field	3,250	3,000	-661,719	-1,613
3. field	3,250	3,000	-330,859	-0,806

conversion of the pressure on the fixtures of enclosure wall panels to columns θ=90°

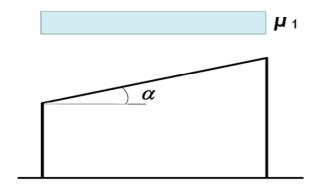
fixtures	distance 1	distance 2	w _e 2	Q [kN]
face wall	3,250	3,000	529,375	1,290
back wall	3,250	3,000	-330,859	-0,806
1. field	3,250	3,000	-794,063	-1,936
2.,3. field	3,250	3,000	-926,406	-2,258

Snow load

specification of snow load, done according to ČSN EN 19 for permanent or temporary design situations

$$s=\mu_i^*C_e^*C_t^*s_k$$

s_k=3,0 KN/m² estimated according to the map of snow areas of the Czech Republic


location generall, II. snow area

C_e=1,0 coefficient - exposition

estimated fot the normal shape of the landscape

C_t=1,0 thermal coefficient

u form factor of snow load

 $\mu_1 = 0.8$

0°≤α≤30° α=0°

s=0,8*1,0*1,0*3,0=**2,4 KN/m**²

conversion of the snow pressure to purlins

distance of purlins in the ground plan I=1,25 r

purlin	width of loading	value of loading Q [kN/m´]
boundary	0,625	1,5
middle	1,25	3

Self-weight load+ incidental load (depends on the character of using)

Construction of the floor

						design
			characteristic	load		load
Self weight			[kN/m²]		γF	[kN/m²]
clay tiles	0,008	12		0,096	1,35	0,130
anhydrit cast floor	0,04	20		0,800	1,35	1,080
thermal insulation	0,06	1,82		0,109	1,35	0,147
concrete slab	0,060	26,000		1,560	1,35	2,106
trapezoidal plate	1,000	0,150		0,150	1,35	0,203
soffit	1,000	0,150		0,150	1,35	0,203
		summary		2,865		3,868
multiplying by loading		1,250	3	,582		4,835
width		0,625	1	,791		2,418

Incidental load		characteristic load [kN/m²]	γғ	design load [kN/m²]
utility load	summary	2,000 2,000	1,5	3,000 3,000
multiplying by loading width	1,250 0,625	2,500 1,250		3,750 1,875

Construction of roof

					design
			characteristic load		load
Self weight			[kN/m²]	γғ	[kN/m²]
soil substrate	1	1,5	1,500	1,35	2,025
thermal insulation	0,3	1,82	0,546	1,35	0,737
concrete slab	0,067	26,000	1,742	1,35	2,352
trapezoidal plate	1,000	0,150	0,150	1,35	0,203
soffit	1,000	0,150	0,150	1,35	0,203
		summary	4,088		5,519
multiplying by loading		1,250	5,110		6,899
width		0,625	2,555		3,449

Incidental load		characteristic load [kN/m²]	γF	design load [kN/m²]
utility load	summary	2,000 2,000		3,000 3,000
multiplying by loading width	1,250 0,625	2,500 1,250		3,750 1,875

Enclousure wall panel

Self weight			characteristic load [kN/m²]	γF	design load [kN/m²]
2*OSB slab thickness 15mm	22,50	0,100	2,250	1,35	3,038
thermal insulation	13,50	0,672	9,072	1,35	12,247
steel section	28,50	0,020	0,570	1,35	0,770
summary			11,892		16,054

glossary: OSB slab

OSB slab weight 0,1 kN/m2 * 2 slabs * 3,75(lenght) * 3(height) steel section (C100) weight 0,02kN/m * lenght of all sections 3 * 3,75(horizontally) + 4 * 3(vertically)

weight of the panel carried through by one fixture [kN] 2,973 4,014

Load combinations

$$\textstyle\sum_{i\geq 1}\gamma_{Gi}G_{ki} + \gamma_{Q1}Q_{k1} + \sum_{i\geq 1}\gamma_{Qi}\psi_{0i}Q_{ki}$$

1. self weight load + incidental load

 $1,35*G_k+1,5*Q_N$

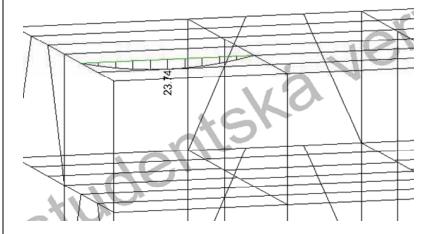
2. self weight load + incidental load + snow load

1,35*G_k+1,5*Q_N+0,6*1,5*Q_S

3. sself weight load + wind load

0,9*G_k+1,5*Q_V

Design of the purlin


(there is used steel S 355 for the design)

Counted reactions (counted with software FIN 3D)

 $R_{Sd} = V_{Sd} = 25,33 \text{ kN}$

Counted bending moment (counted with software FIN 3D)

 $M_{Sd} = 23,7400 \text{ kNm}$

Horizontal module needed

W_{min}= 23,74*10^3/308,7

W_{min}= <u>76,9031</u> mm³

Profile design

	IPE 160			
m=	12,9	kg/m		
A=	1543	mm^2		
W _y =	77300	mm^3		
W _{pl,y} =	88340	mm^3		
l _y =	5412000	mm^4		
A _{vz} =	764	mm^2		

Recognition of the designed profile

Torque loading capacity

$$M_{pl,Rd} = W_{pl,y} * f_{yd}$$

M_{pl,Rd}= 88340*308,7

$$M_{pl,Rd} = 00040 \ 000,7$$
 $M_{pl,Rd} = \frac{27,2706}{} \ kNm > M_{Sd} = 23,7400 \ kNm$
 $\longrightarrow Purlin complies$

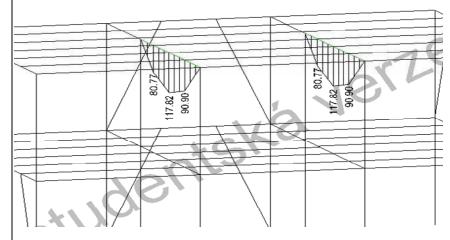
```
Shear carrying capacity
               V_{pl,Rd} = A_{VZ} f_{vd} \sqrt{3}
               V_{pl,Rd} = 764*308,7/\sqrt{3}
               V<sub>pl,Rd</sub>= 136,1662 kN
                                                                         25,33 kN
                      ->Purlin complies
           Limit the applicability of state - deflection
           (all load)
                                                                 5,239 kN/m
                                                                                     g_k + q_k = 10,739
                                                                    5,5 kN/m
                   \delta = (5/384) * (g_k*L^4)/(EI_v)
                   \delta = (5/384)*(5,239*3750^4)/(210000*5412000)
                  δ= <u>11,870</u> mm
                                                       \delta_{lim}= L/250=
                                                                            15 mm
Summary of all purlins in the structure and their weight
                    number of purlins
                 weight of one purlin
                                             m= 12,9 kg/m
                 lenght of one purlin
                                             I= 3,75 m
                    weight summary
                                            m_c= 2031,75 kg
```

Design of a girder

(there is used steel S 355 for the design)

Counted reactions from purlins (counted with software FIN 3D)

 $F_k = 50,66 \text{ kN}$


vlastní tíha nosníku je uvažována přímo vy výpočtu vnitřnch sil

Counted reactions (counted with software FIN 3D)

 $R_{Sd} = V_{Sd} = 97,37 \text{ kN}$

Counted bending moment (counted with software FIN 3D)

 M_{Sd} = 117,8200 kNm

Horizontal module needed

 $W_{min} = M_{Sd}/f_{yd}$

f_{vd}= 308,7 Mpa (steel S355)

W_{min}= 117,82*10^3/308,7

W_{min}= <u>381,6650</u> mm³

IPE 270			
36,1	kg/m		
4594	mm ²		
429000	mm ³		
484000	mm^3		
57900000	mm ⁴		
2214	mm^2		
135	mm		
10,2	mm		
	36,1 4594 429000 484000 57900000 2214 135		

Recognition of the designed profile

Plastic flexural loading capacity steel-concrete section co-width cof oncrete slab

270

concrete C25/30 is used thickness d=

d= 60

mm

4594*308,7= x*937,5*14,167 x = (4594*308,7)/(937,5*14,167)x= **106,780** mm ->It is apparent that the neutral axis lies outside the concrete slab presumption of a neutral axis location in a steel profile balance of internal forces $N_a = N_c + 2N_{a1}$ $N_a = A_s f_{vd} = 4594*308,7=$ 1418,168 kN $N_c = d * b_{eff} * f_{cd} = 60*937,5*14,167 =$ 796,875 kN N_{a1} = $(N_a-N_c)/2$ = (1418,1678-796,875)/2 **310,646** kN presumption of a neutral axis position in the upper flange of steel profile $x = N_{a1}/(f_{vd}^*b)$ x = 310,646*1000/(308,7*135)x= **7,454** mm 10,2 mm -->The neutral axis is located in the upper flange of steel profile Torque loading capacity $M_{pl,Rd} = N_c^* r_c + N_{a1}^* r_{a1}$ $M_{pl,Rd} = 796,875*(135+110-30)+310,6464*(135-3,727)$ M_{pl.Rd}= **212,108** kNm M_{Sd}= **117,820** kNm ->Girder complies Shear carrying capacity $V_{pl,Rd} = A_{VZ} f_{vd} \sqrt{3}$ $V_{pl.Rd} = 2214*308,7/\sqrt{3}$ V_{pl.Rd}= **394,597** kN $V_{Sd} = 50.66 \text{ kN}$ ->Girder complies Limit the applicability of state - deflection (all load) 12,464 kN/m 13,026 kN/m $\delta = (5/384) * (g_k*L^4)/(EI_v)$ $\delta = (5/384)*(12,464*4750^4)/(210000*57900000)$ δ= **13.896** mm < δ_{lim} = L/250=

f_{ck}= 25 Mpa

presumption of a neutral axis location in the concrete slab (concrete in the rib is neglected)

 $f_{cd} = 0.85 f_{ck} / \gamma_c = 0.85 25 / 1.5 =$

50 · mm

 $g_k + q_k = 25,490$

mm

19

15.833 mm

 $\delta_{lim} = L/300 =$

14.1667 Mpa

Summary of all girders in the structure and their weight

(incidental load)
$$\begin{split} & \delta_2 = q_k/g_k * \delta \\ & \delta_2 = 0/25,49*13,896 \\ & \delta_2 = 0.25,49*13,896 \end{split}$$

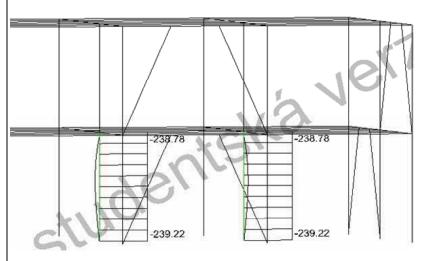
b_{eff}= 2b_{e1}

b_{eff}= L/4

N_a= N_c

 $A_a f_{vd} = x b_{eff} f_{cd}$

balance of internal forces


number of girders n= 8 ks
weight of one girder m= 36,1 kg/m
lenght of one girder l= 7,5 m
weight summary m_c= 2166 kg

Design of a column

(there is used steel S 355 for the design)

Loading force

$$F_{Sd} = 239,22 kN$$

Ρ	rnt	116	۰ د	100	ian

square tube 120x120x5 17,82 kg/m 2270 mm² 46,8 mm 46,8 mm

 λ_1 = 93,9 $\sqrt{(235/355)}$ = 76,399

f_{vd}= 308,7 Mpa (steel S355)

křivka

souč. vzpěrnosti vzpěrnosti

Recognition of the designed profile

(buckling length)

$$L_{cr,y} = L_{cr,z} = 3.0 \text{ m}$$

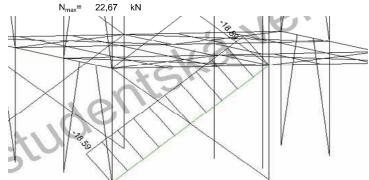
 $\lambda_y = L_{cr,z}/i_y = 3000/46.8 = 64,10256$

 $\lambda_z = L_{cr,y}/i_z = 3000/46,8 = 64,10256$

 $\lambda_{v} = \lambda_{v}/\lambda_{1}^{*}\sqrt{\beta_{A}} = 64,103/76,399^{*}\sqrt{1}$ 0,8391 0,699 $\lambda_z = \lambda_y / \lambda_1^* \sqrt{\beta_A} = 64,103/76,399^* \sqrt{1}$ 0,8391 0,699

buckling pressure loading capacity

N_{b,Rd}= **489,82355** kN


Summary of all columns in the structure and their weight

number of columns n= 24 ks weight of one column m= 17,82 kg/m I= 3 m lenght of one column weight summary m_c= **1283,04** kg

Design of reinforcements

(there is used steel S 355 for the design)

Normal force for the design of reinforcements

Profile design

TR 38x4,0 m= 4 kg/m A= 509 mm² i= 14,4 mm

f_{yd}= 308,7 Mpa (steel S355)

Design of connecion

 srews
 M12
 5.6

 spacing
 e_1 =
 30
 mm

 e_2 =
 25
 mm

 e_1 =
 40
 mm

loading capacity of the shear

 $F_{v,Rd} = 17,4 \text{ kN}$

(single-shear, shear in the screw-thread)

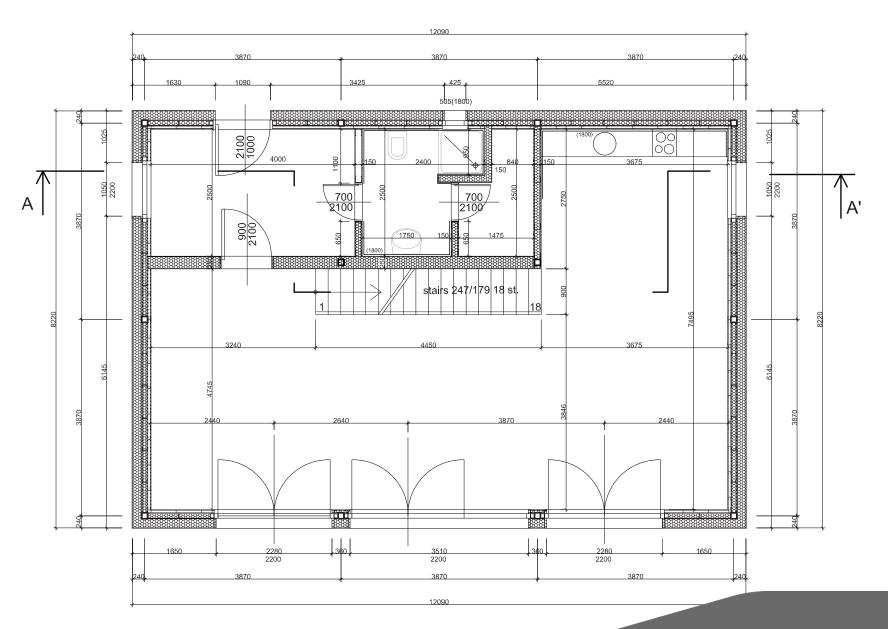
loading capacity of the deformation

F_{b,Rd}= 48,72 kN (*t*=6*mm*, S355, recommended spacing)
—>The shear loading capacity is dominant

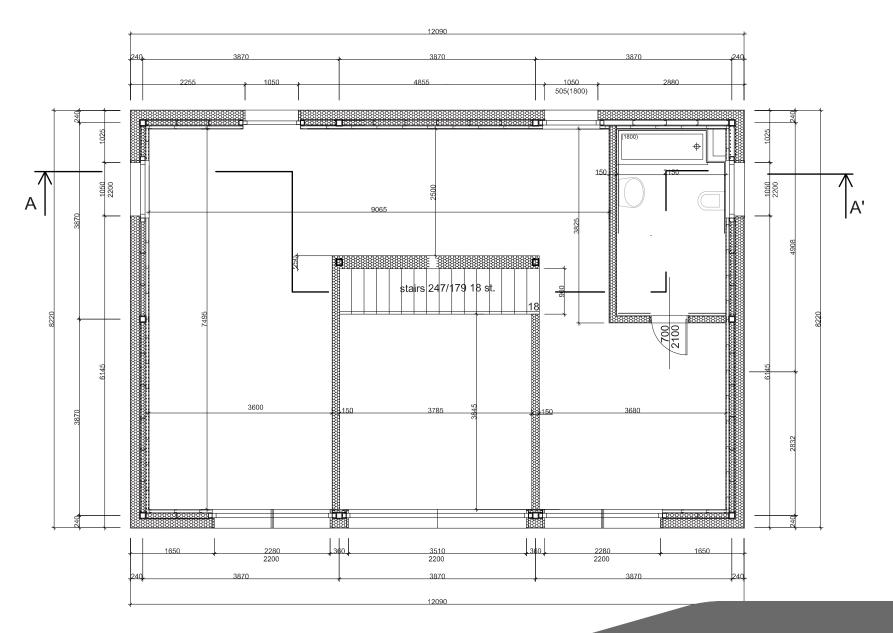
number of screws

n= 22,67/17,4 n= 1,3

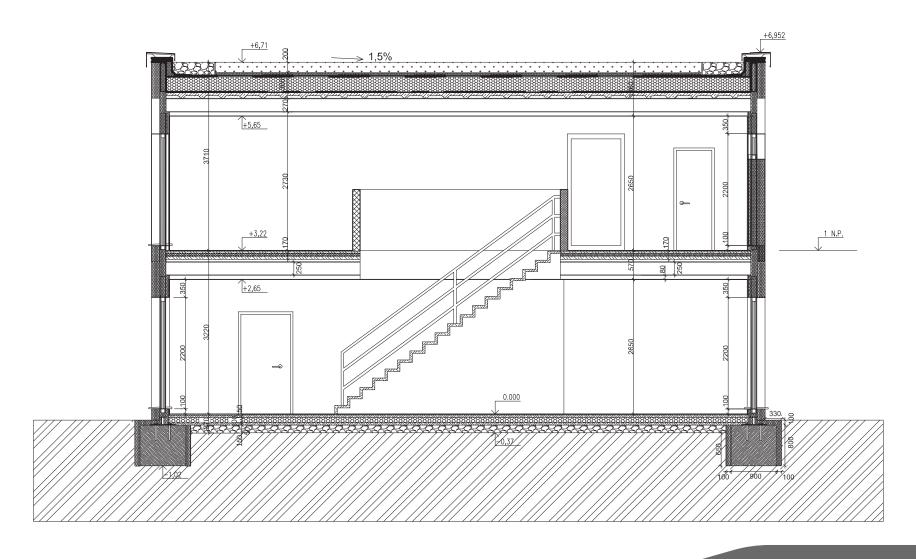
=> proposal 2 screws M12 5.6

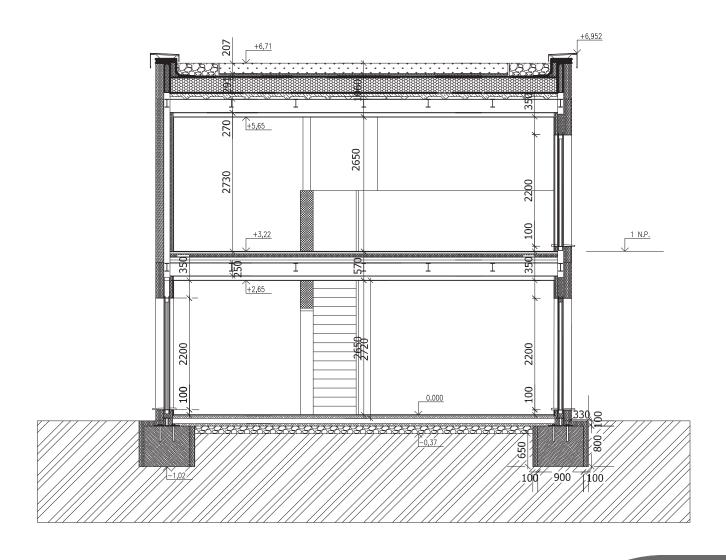

recognition of the element itself

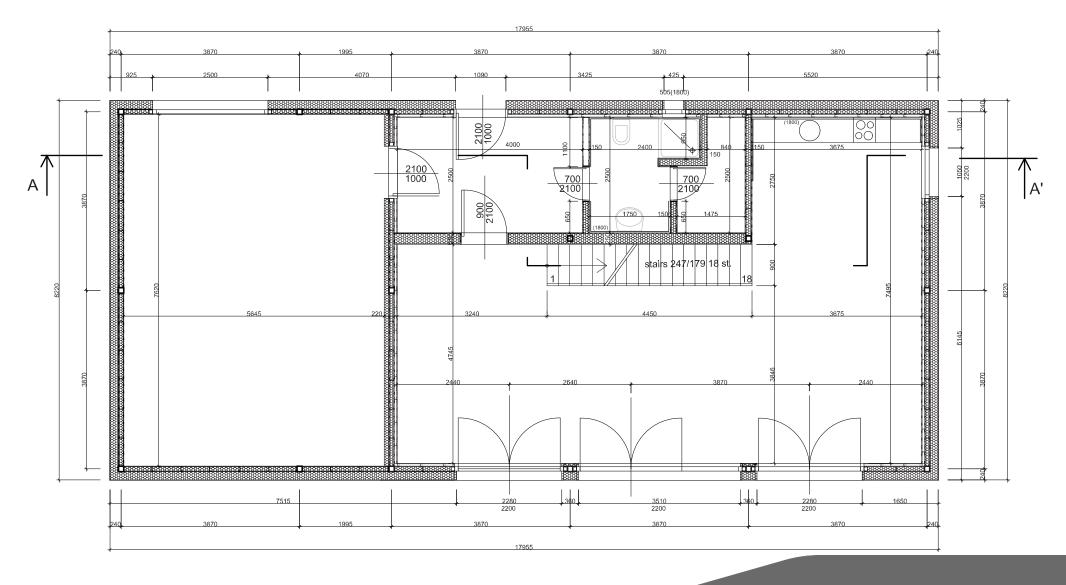
buckling pressure loading capacity

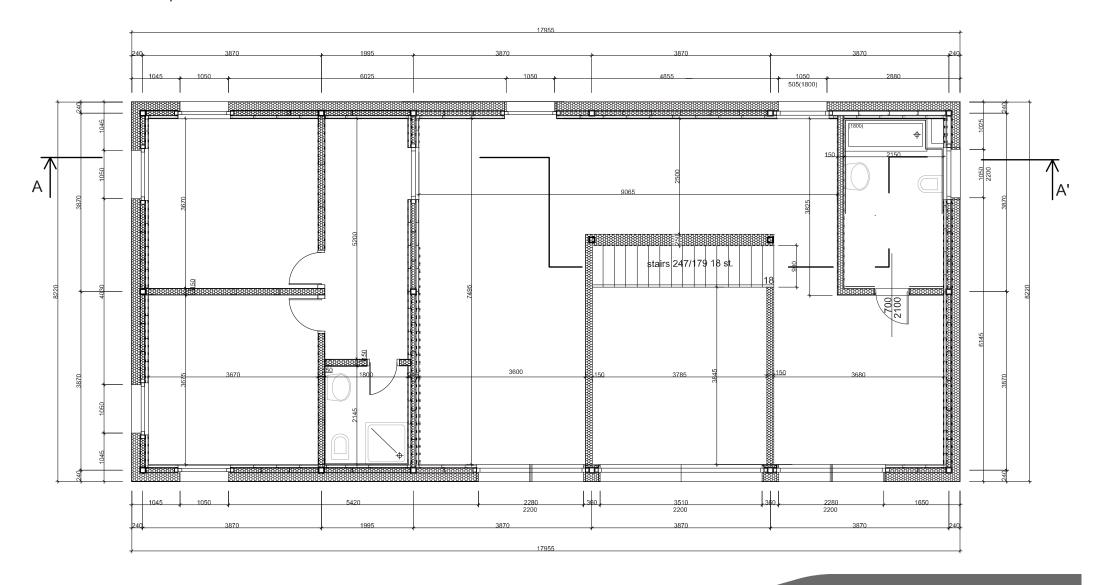

N_{b.Rd}= 27,65458 kN

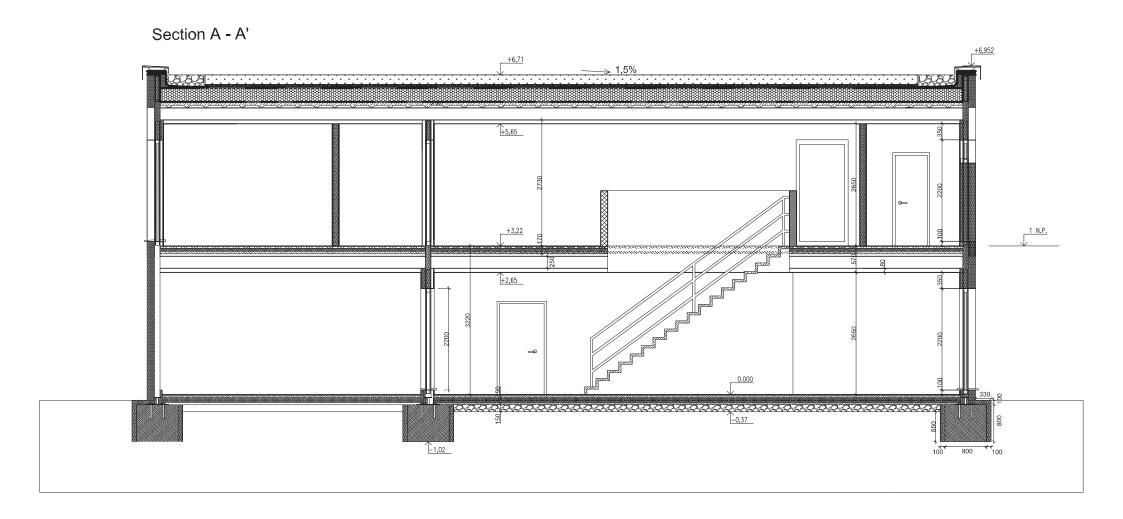
Summary of all reinforcements in the structure and their weight						
nun	n=	12	ks			
weigh	m=	4	kg/m			
lengh	t of one reinforcement	J=	4,8	m		
	weight summary	m _c =	230,4	kg		
weight su	kg					


Ground plan 1st floor

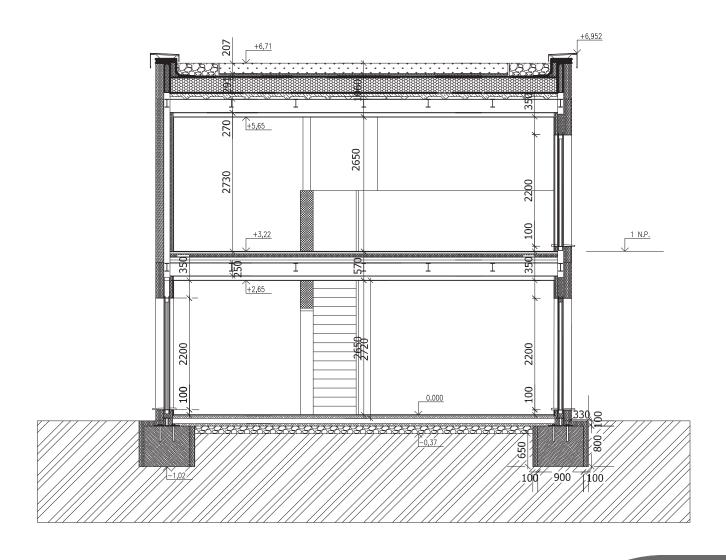

Ground plan 2nd floor


Section A - A'


SECTION B - B'



Ground plan 1st floor



Ground plan 2nd floor

SECTION B - B'

