Structural Steel Virtual Excursion

Design, manufacturing, erecting and full physical test of a simple portal frame of structure

František Wald, Jiří Mareš, Břetislav Židlický

Structural Steel Virtual Excursion

Partners:

TU/e Eindhoven University of Technology Prof Bert Snijder

DTU	Lyngby University
	Prof Jeppe Jőnsson

Technical University of Munich Prof Martin Mensinger

Structural Steel Virtual Excursion

- Objectives:
- Build portal frame type of building (5.6 m structural span, 4.3 m structural height and 23.5 m building length),
- Perform full scale physical test on building with and without roof cladding (to test the effect of cladding on overall stiffness of the building),
- Do not damage building during the test! We will be checking just response to the side horizontal load at serviceability limit state,
- Some damage may occur to cladding connections. Check this damage.
- Investigate the contribution of roof cladding to the stiffmess of the building,
- Shot video from manufacturing and building assembly,
- Record full scale test.

Manufacturing and assembly

- CNC cutting
- Manual welding
- Surface treatment
- Primer and final paint
- Assembly took 2 days
- Details in video

- Video
 - https://odysee.com/@jxm:7/2021_experiment_hala_v01:4

- Simple frame
- Hot rolled I-profiles (IPE 300 for column, IPE270 for rafter)
- Roof clad with composite panels (PUR)
- Test performed on UNCLAD building
- Another test on CLAD building (bare frame)
- Unit used by lab team when collecting experimental data, force and displacements shown on the photograph

- Forklift
 - Max. force about 50 kN (5 tons)
 - 30 kN was required and achieved during the test

• Detail of Z purlins, cladding by composite panels and column-rafter connection

• Detail of displacement sensors used during the experiment

• Column base, bracing plate and bracing connection

- 16 16:27
- Crossing of bracing diagonals

• Roof cross bracing

• Detail of cladding as well as fin plate used to connect dynamic rope to exert force by forklift

• Analysis model

Deformation during the experiment (F = 30 kN)

Horizontal deformation of bare frame for F = 30 kN

 M_y for F = 30 kN

Behaviour - observations

Distortion of Zed roof purlin during the test

Damage and ovalization of holes in composite roof panel

Point #1, F-u diagram, bare steel frame

Point #2, F-u diagram, bare steel frame

Point #3, F-u diagram, bare steel frame

Point #1, F-u diagram, Frame with roof cladding

Point #2, F-u diagram, Frame with roof cladding

Point #3, F-u diagram, Frame with roof cladding

Comparison of horizontal deformations of clad and unclad building for Point 1

- Objectives:
- Analysis of internal forces and displacements based on frame equations (no need for software)
- Investigate sensitivity of frame to sway imperfections
 - Calculate horizontal deformations and internal forces
 - Check $\alpha_{\rm cr}$
 - Check limiting vertical loading at which sway imperfections need to be considered
- Ultimate Limit State of column, check:
 - Lateral torsional buckling of column
 - Interaction of axial force and bending moment

- Python based code developed in Jupyter notebook
- Procedure:
 - Internal forces and deformations based on equations (sketches)
 - Level of loading is hardcoded (can be adjusted as appropriate)
 - Check frame imperfections
 - Check $\alpha_{\rm cr}$ and it's limits
 - · Check if sway imperfections need to be considered
 - Check interaction of axial compression (flexural buckling, flexural torsional buckling) and lateral torsional buckling (Table NB.3.1 of CSN EN 1993-1-1)

In [145]: 1 # Loading 2 # Total factored UDL on rafter 3 qd = 20 #[kN/m] 4 Fd = 20 #[kN]

Code could be found at:
 https://github.com/maresjiri/Simple-portal-frame

• Profiles and material

1	# Profiles
2	# Column
3	# IPE 300
4	<pre>Ac = 5381 #[mm^2], cross-sectional area</pre>
5	Iyc = 83560000 #[mm^4]
6	Wyc = 557000 #[mm^3]
7	Izc = 6038000 #[mm^4]
8	Itc = 201200
9	Iwc = 12590000000
10	$zg = 0 \ \#[m]$
11	zj = 0 #[m]
12	
13	
14	# Rafter
15	# IPE 270
16	<pre>Ar = 4594 #[mm], cross-sectional area</pre>
17	$Iyr = 57900000 \ \#[mm^4]$
18	Wyr = 429000 #[mm^3]
19	Izr = 4199000 #[mm^4]
20	
21	
22	# Material
23	$E = 210000000 \ \#[kPa]$
24	$G = 80700000 \ \#[kPa]$
25	fy = 275000
26	gammaM1 = 1

• Loading and frame imperfections

```
1 # Loading
2 # Total factored UDL on rafter
3 qd = 20 #[kN/m]
4 Fd = 20 #[kN]
```

```
1 # Frame imperfections
2 alpha_h = 2 / math.sqrt(H)
3 m = 2
4 alpha_m = math.sqrt(0.5 * (1 + 1/m))
5 phi0 = 1 / 200
6 phi = phi0 * alpha_h * alpha_m
7
8 # Equivalent horizontal force
9 EHF = qd * L * phi
10 k1 = Iyc * 10**(-12) / H
11 k2 = Iyr * 10**(-12) / L
12 psi_EHF = (EHF * H / 6) * ((k1 + 2*k2) / k1 / k2)
13 DELTA_EHF = psi_EHF * H / 2 / E
```

- α_{cr} and amplification factor
- Here, $\alpha_{cr} >> 10$ therefore linear analysis ignoring sway imperfections is acceptable
- When loading on rafter is increased α_{cr} gets reduced and imperfections need to be accounted for in analysis
- Re-running the code with increased qd shows sensitivity of the frame to the imperfections

```
1 Hd = Fd + EHF
 2 Vd = qd * L
    alpha cr = (Hd / Vd) * (H / DELTA)
alpha cr
                           = 26.21 [-]
 1 # Amplification factor
 2 \text{ amp} = 1 / (1 - 1 / \text{ alpha cr})
    errmsg = "Method is adequate."
    if alpha cr < 3:
        errmsg = "ERROR: alpha cr out of limits."
    if alpha cr > 10:
 4
        errmsg = "Linear elastic analysis is adequate."
 5
        amp = 1
 6
    print(errmsg)
```

Linear elastic analysis is adequate.

Buckling curves and critical buckling moment M_{cr}

- Table NB.3.1 of CSN EN 1993-1-1 or use an alternative solution specific to your NAD
- Interaction of axial force and bending moment

Analysis using commercial software

- Modelled in SCIA
 Engineer
- Model can be downloaded from project site

Conclusions

- Cladding contributes to the stiffness of building but the analysis needs to assure that it does not get damaged,
- Contribution of cladding to the overall stiffness of building will depend on quality and frequency of it's connection to the framework,
- Certain permanent damage occurs in composite panel at the serviceability limit state,
- Distortional stiffness/flexibility of roof purlins also contributes to this deformation,
- Simple analysis shows as the sensitivity of imperfect frame to vertical loading, the level of loading at experiment is fairly below these limits.