

CAPACITY DESIGN USING CBFEM

Contents

- Introduction
 - Seismic design
 - Structural types
 - Seismic loads
- Capacity design
 - Overstrength
 - Loads
- CBFEM
- Verification & Validation
- Life demonstration
- Summary

Seismic design

- Seismic loads may be very high
- Using dissipative structural behavior, loads may be decreased
- Ductility must be ensured

Structural types

- Moment resisting frames (MRF)
- Frames with concentric bracings (CBF)
- Frames with eccentric bracings (EBF)
- Inverted pendulum structures
- Steel structures associated to concrete cores or concrete walls
- Dual frames made of moment resisting frames combined with braced frames
- Moment resisting frames combined with reinforced concrete infills

Seismic loads

- 1. Seismic load combination
 - decreased by behavior factor q
- 2. Capacity design
 - Selected element(s) yield while other elements are strong
 - Required for ductility class medium and high

Capacity design

- Aim is to prove that the structure has sufficient ductility
- Proven:
 - structural type
 - joint type
 - detailing

Capacity design – loads

• Plastic hinge at the end of each beam

Joint types

Haunched

Extended unstiffened end-plate

Extended stiffened end-plate Reduced beam section

Overstrength

Capacity design – Loads

Joint strength classification

- 1. Full strength
 - plastic demand is concentrated in the beam
 - $\alpha \geq \gamma_{\rm ov} \cdot \gamma_{\rm sh}$
- 2. Equal strength
 - in the beam and connection and/or column web panel
 - α ≈ 1
- 3. Partial strength
 - in the connection or column web panel
 - *α* < 1

Column vel panel

Three macro-components

CBFEM

Component Based Finite Element Method

Calculate yesterday's estimates

Component model

Bolted joint

CBFEM model

Plates

Welds

Brno University of Technology • Faculty of Civil Engineering

15/30

CBFEM – new feature in v.10

Dissipative components
DISS1

DISS1 [Dissipative item]

Properties

Strain hardening ysh	1.2
Items	IPE450

General

Name	S 355							
Physical properties								
m [kg/m3]	7850							
E [MPa]	210000.0							
ν	0.3							
G [MPa]	80769.2							
α [1e-6/K]	12							
λ [W/(m.K)]	50							
c [kJ/(kg.K)]	0.49							

Properties specific to European standard

fu [MPa]	490.0
fy [MPa]	355.0
fu,40 [MPa]	470.0
fy,40 [MPa]	335.0
γov,fu [-]	1.25
γον,fy [-]	1.25

CBFEM – Loads

Model

Model type	N-Vz-My	•
Forces in	Position	•
X [mm]	455	

	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
	HEB340 / End	-1000.0	0.0	0.0	0.0	0.0	0.0
>	IPE450 / End	0.0	0.0	-295.0	0.0	906.0	0.0

	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
	HEB340 / End	-1000.0	0.0	0.0	0.0	0.0	0.0
>	IPE450 / End	0.0	0.0	295.0	0.0	-906.0	0.0

CBFEM – Model type

Verification

EN 1998-1: "Use EN 1993-1-8 if not specified otherwise" Equaljoints: Detailed design guides for:

- Haunched joints
- Stiffened extended end-plate joints
- Unstiffened extended end-plate joints
- Dog bone joints

Haunched joint

Usually full strength connection and column web panel

Stiffened extended end-plate

Unstiffened extended end-plate

Equal or partial strength connection and column web panel

Dog bone joint

Usually full strength connection and column web panel

Validation

Brno University of Technology • Faculty of Civil Engineering

24/30

Rotational capacity

Stiffness analysis

Rotational capacity at 15 % plastic strain of plates bolts and welds must be stronger

Rotational stiffness of joint component

	ltem	Comp.	Loads	M [kNm]	Mj.Rd [kNm]	Sj,ini [MNm/rad]	Sjs [MNm/rad]	Φ [mrad]	Фc [mrad]	L (m)	Sj,R [MNm/rad]	Sj,P [MNm/rad]	Class
>	В	Му	LE1	40,0	86,1	36,0	36,5	1,1	361,0	6,00	24,3	0,5	Rigid

Stiffness diagram My - øy, LE1

Weld detailing

2. All welds shall be quality level C unless otherwise specified on drawings.

Individual macro-components

Brno University of Technology • Faculty of Civil Engineering

27/30

Life demonstration

Calculate yesterday's estimates

Capacity design – Summary

- Necessary for ductility class medium and high
- Rules in EN 1993-1-8 still apply
- Detailing of welds is prescribed no need to check
- Workflow:
 - Apply overstrength to member with plastic hinge
 - Set loads to create plastic hinge
 - Observe plastic hinge in the member $\varepsilon_{\rm pl} \cong 5 \%$
 - Standard check all other components

BRNOFACULTY OF CIVILUNIVERSITYENGINEERINGOF TECHNOLOGY

Thank you for your attention

Brno University of Technology • Faculty of Civil Engineering

30/30