

Franrišek Wald, Marta Kuříková, Matyáš Kožich

Czech Technical University in Prague

20.06.2019

Contents STRUCTURAL CONFIGURATION Ο **ACTIONS** Ο **DESIGN FOR GRAVITY LOADING** ٠ **SEISMIC DESIGN** ٠ MODELLING ۲ **STRUCTURAL** Ο **ANALYSIS** Ο COMPARATIVE ASSESSMENTS Ο

- Structural details and seismic data
- Loads assessment
 - Analysis of loads
 - Design for gravity loading
 - Seismic design
- Modelling assumptions
- Structural analysis and results
- Comparative assessments

Structural configuration

Perimetral seismic resistant system

HINGED

6.00

6.00

6.00

6.00

24.00

Lateral load resisting frame

• Moment resisting frame (MRF)

Plan configuration of the building with identification of the lateral load resisting system for X direction Plan configuration of the building with identification of the lateral load resisting system for Y direction

BRACED 2.00 6.00 24.00 seismic loading BRACED 2,00 6.00 8 INGED 6.00 BRACED HINGED Tributary area for seismic masses x 6.00 6 00 6 00 6.00 24.00

BRACED

HINGED

6.00

HINGED

STRUCTURAL

CONFIGURATION

Structural configuration

- Perimetral seismic resistant system
- Moment resisting frame (MRF)

ACTIONS

DESIGN FOR

MODELLING

ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE

ASSESSMENTS

GRAVITY LOADING

SEISMIC DESIGN

Gravity loads

- \circ Live loads for office buildings : q_k=3.00 kN/m²
- Structural permanent loads:

The floor slab is a **composite steel-concrete slab** with HI-BOND A 75 / P760 corrugated steel sheet and C20/25 grade concrete cast. The total thickness of the slab is equal to 125 mm. The corrugated sheet is made of S280GD steel, having a thickness equal to 1.2 m.

Weight of concrete cast is 1.60 kN/m² +

Weight of corrugated steel sheet is 0.15 kN/m²->

-> the total structural permanent load is $g_{k1}=1.75 \text{ kN/m}^2$

Ο

Gravity loads

Non-structural permanent loads:

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS **Soundproof insulation** - The acoustic insulation of t = 10 mm and with a weight per unit volume of γ = 0.30 kN/m³

Floor screed The floor screed is made by lightweight aggregates with t= 50 mm and γ = 7.2 kN/m³.

Floor of ceramic tiles with a $\gamma = 10 \text{ kN/m}^3$ and t = 20 mm.

Thermal insulation made of fiberglass of t = 100 mm and γ = 0.10 kN/m³

Ceiling made of plasterboards t = 20 mm with γ = 0.177 kN/m².

Internal partition walls have a unit weight less than 1 kN/m, hence, according to EC1, it is possible to model their weight as a uniform load equal to 0.50 kN/m².

	Weight per unit	Thickness (m)	Loads (kN/m ²)
	volume (kN/m³)		
Soundproof insulation	0.30	0.010	0.003
Floor screed	7.20	0.050	0.360
Floor	10.00	0.020	0.200
Thermal insulation	0.10	0.100	0.010
Ceiling			0.177
Internal partition walls			0.5
Total value of non-structur	al permanent loads	g _{k2} =	1.25 kN/m ²

Equaljoints Plus Workshop, Prague, 20.06.2019

Design of beams of gravity load resisting system

- The beams are designed to withstand a load combination of $q_d = 8.55 \text{ kN/m}^2$.
 - The reactions corresponding to the supports is:

DESIGN FOR GRAVITY LOADING

STRUCTURAL

ACTIONS

CONFIGURATION

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

$$R_i = 1.10 \ q_d l = 1.10 \times 8.55 \times 2 = 18.81 \ k \ N/m$$

$$R_e = 0.40 \ q_d \ l = 0.40 \times 8.55 \times 2 = 6.84 \ k \ N/m$$

• The maximum moment in the midspan of secondary beams is:

$$M_{max} = R_i \frac{L^2}{8} = 18.48 \times \frac{6^2}{8} = 84.6 \ kN \ m$$

$$\rightarrow \qquad W_{pl} = \frac{M_{max}}{f_y} = \frac{84.6 \times 1000}{355} = 238.3 \ cm^3$$

-> IPE220

 $M_{Rd} = \frac{285.4 \times 10^3 \times 355}{1.00} \cong 101.32 \ kNm$

• The secondary beams have been also checked against serviceability requirements.

Structural scheme of the composite deck

Design of beams of gravity load resisting system

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR

MODELLING

ASSUMPTIONS

STRUCTURAL

COMPARATIVE ASSESSMENTS

ANALYSIS

GRAVITY LOADING

SEISMIC DESIGN

The concentrated load due to the adjacent secondary beams is:
 P=(2 x 18.86 x 6)/2 =112.86 kN

• The maximum moment acting on these beams is equal to:

$$M_{max} = Pa = 112.86 \times 2 = 225.72 \ kN \ m$$

$$\rightarrow W_{pl} = \frac{M_{max}}{f_y} = \frac{225.72 \times 1000}{355}$$

$$= 635.8 \ cm^3 \quad \text{-> IPE330}$$

$$M_{Rd} = \frac{804.3 \times 10^3 \times 355}{1.00} \cong 285.526 \, kNm$$

Equaljoints Plus Workshop, Prague, 20.06.2019

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Additional permanent loads

- 44 × IPE220 per floor = 67.85 kN
- 12 × IPE 330 per floor = 34.68 kN
- 16 × IPE 300 per floor = 40.48 kN.
- The total weight of beams is equal to:

 $g_{bk} = 67.85 + 34.68 + 40.48 = 143.00 \text{ kN}/(24\text{m}\times24\text{m}) = g_{bk} = 0.245 \text{ kN}/\text{m}^2$

- The total permanent loads: $\rightarrow g_{k1} + g_{k2} + g_{bk} = 3.245 \text{ kN/m}^2$
- The weight of external walls of 3.5 m height is 0.16 kN/m² -> 53.76 kN/floor

Total permanent masses for the evaluation of the seismic loads:

• Intermediate storey:

 $3.245 \times (24 \times 24) + 53.76 = 1922.88 \text{ kN} = 192.3 \text{ tons}$

• Roof:

 $3.245 \times (24 \times 24) + 53.76/2 = 1896.00 \text{ kN} = 189.6 \text{ tons}$

Floor mass

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Location	Туре	Masses for the computation	Loads	ψ _{2,i}	$\psi_{\text{E},i}$
		of seismic loads (tons)	(kN/m²)		
	Permanent	G _k = 189.600	3.245		
Roof	Variable	Q _k =172.800	3	0.3	0.24
Intermediate	Permanent	G _k =192.288	3.245		
stories	Variable	Q _k =172.800	3	0.3	0.15

where:

- G_k is permanent actions
- Q_k is live actions
- ψ_2 is coefficient for the quasipermanent value of the variable actions
- With reference to the seismic load combination provided by Eurocode 8, masses are evaluated as with:

Storey	z _i (m)	Floor masses m _{p,i} (tonne)
1	3.5	218.2
2	7.0	218.2
3	10.5	218.2
4	14.0	218.2
5	17.5	218.2
6	21.0	231.1
	<i>m</i> =	1322.1

 $\Sigma G_{k,i} + \Sigma \psi_{E,i} Q_{k,i}$ Eq (3.17) – EN1998-1

Seismic forces

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR

SEISMIC DESIGN

MODELLING **ASSUMPTIONS**

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

- a_g=0.35g;
- Soil Type "B"; •
- Damping= 5%; ٠
- Type 1 spectrum
- The torsional effects are neglected;
- q=6 (for **MRF**) ٠
- $T_1 = C_1 H^{3/4} = 0.83 sec$ •

- is design ground acceleration a_q
- is behaviour factor q
- T₁ is fundamental period
- for moment resistant space steel frames is 0,085. C_t
- is a height of the building, in m, from the foundation or top of a rigid Η basement

Seismic design combination

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Lateral load resisting frame parallel to the secondary beams

• Vertical loads:

$$\Sigma G_{k,i} + \Sigma \psi_2 Q_{k,i} = 3.245 + 0.3 \times 3 = 4.145 \text{ kN/m}^2$$

 \rightarrow distributed loads acting on beams of seismic resistant schemes

 $q_d = 0.40 \times 4.145 \times 2 = 3.316 \,\mathrm{kN/m^2}$

 Concentrated loads on columns based on the seismic load

Storey	<i>F_{c1}</i> (kN)	<i>F_{c2}</i> (kN)	F_{lc} (kN)
1	30.72	58.10	905.40
2	30.72	58.10	905.40
3	30.72	58.10	905.40
4	30.72	58.10	905.40
5	30.72	58.10	905.40
6	29.04	56.40	900.36

Ο

Seismic design combination

STRUCTURAL CONFIGURATION

SEISMIC DE

MODEL ASSUMP1

COMPARA

Lateral load resisting frame orthogonal to the secondary beams

• Concentrated loads on columns based on the seismic load

FOR	·				$ \begin{array}{c} \downarrow^{Fet} \downarrow P \downarrow P \downarrow^{Fa} \downarrow P \downarrow P \downarrow P \downarrow Fet \downarrow Fit \downarrow Fit$
DING		5 (1 81)	F_{c1}	<i>F</i> _{c2}	$ \begin{array}{c} F_{e1} \downarrow P \downarrow P \downarrow F_{e2} \downarrow P \downarrow P \downarrow F_{e2} \downarrow P \downarrow P \downarrow F_{e2} \downarrow P \downarrow P \downarrow F_{e1} \downarrow P \downarrow P \downarrow F_{e1} \downarrow F_{e1} \\ \end{array} $
SIGN	Storey	P (KN)	(kN)	(kN)	$ \begin{array}{c} F_{\alpha} \end{array} \begin{array}{c} F_{\alpha} \downarrow_{P} \downarrow_{P} \\ F_{\alpha} \downarrow_{P} \downarrow_{P} \end{array} \begin{array}{c} F_{\alpha} \downarrow_{P} \downarrow_{P} \\ F_{\alpha} \downarrow_{P} \downarrow_{P} \end{array} \begin{array}{c} F_{\alpha} \downarrow_{P} \downarrow_{P} \\ F_{\alpha} \downarrow_{P} \downarrow_{P} \end{array} \begin{array}{c} F_{\alpha} \\ F_{\alpha} \end{array} \end{array} \begin{array}{c} F_{\alpha} \\ F_{\alpha} \end{array} \begin{array}{c} F_{\alpha} \\ F_{\alpha} \end{array} \begin{array}{c} F_{\alpha} \\ F_{\alpha} \end{array} \end{array} \begin{array}{c} F_{\alpha} \\ F_{\alpha} \end{array} \begin{array}{c} F_{\alpha} \\ F_{\alpha} \end{array} \end{array} $
	1	27.36	13.31	23.26	
LING ONS	2	27.36	13.31	23.26	F_3 \bullet
	3	27.36	13.31	23.26	$\xrightarrow{F_2} \begin{array}{c} F_2 \end{array} \xrightarrow{F_2} \end{array} \xrightarrow{F_2} \begin{array}{c} F_2 \end{array} \xrightarrow{F_2} \end{array} \xrightarrow{F_2} \begin{array}{c} F_2 \end{array} \xrightarrow{F_2} \xrightarrow{F_2} \end{array} \xrightarrow{F_2} \begin{array}{c} F_2 \end{array} \xrightarrow{F_2} \xrightarrow{F_2}$
IRAL YSIS	4	27.36	13.31	23.26	$ \begin{array}{c} F_{1} & F_{2} \downarrow P & \downarrow P \downarrow $
	5	27.36	13.31	23.26	
	6	27.36	11.63	21.58	
	-				24.00

1-

1 -

• Lateral load resisting frames arranged orthogonal to secondary beams do not have distributed loads but concentrated loads with a span of 2 m (P).

Modelling assumptions of MRFs

• Reduced beam sections (RBS / Dog-bones)

ACTIONS

STRUCTURAL CONFIGURATION

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Joint Type	Geometry
DB-S:	$a = 0.6b_{f}$
Full-strength	$b = 0.75d_b$
with strong	b
panel zone	$s = a + \frac{1}{2}$
(Type "d")	$g = 0.2 b_{f}$

Equaljoints design manual

• S355 steel (γ_{ov} =1.25)

(d)

- Rigid constraints at each floor
- "P-Δ column" (leaning column) modelling second-order effects from "gravity" frames
- Seismic mass assigned to nodes of lateral load resisting frame

ACTIONS

DESIGN FOR

SEISMIC DESIGN

Modelling assumptions

Simplified approach

• Eurocode-based design and preliminary assessment of seismic performance of frames;

- Beams intersect columns in nodes
- Elastic beam elements only

Structural analysis

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

ti ucturar anarysis

• Seismic load combinations:

Ultimate Limit State (ULS):

- for dissipative elements: $\sum G_{k,j} + \sum \psi_{2,i}Q_{k,i} + \alpha(A_{Ed} + I)$
- for non-dissipative elements: $\sum G_{k,j} + \sum \psi_{2,i}Q_{k,i} + \alpha(\Omega_T A_{Ed} + I)$
- Second order effects should be accounted for, by multiplying the seismic action by α if $\theta > 0.1$

where

$$\alpha = 1/(1-\theta)$$

$$\theta = \frac{P_{tot}d_r}{V_{tot}h} \le 0.1$$

P_{tot} is the total gravity load at and above the storey considered in the seismic design situation

 d_r is the design interstorey drift, evaluated as the difference of the average lateral displacements d_s at the top and bottom of the storey under consideration and calculated;

V_{tot} is the total seismic storey shear;

h is the interstorey height;

 Ω_{T} is multiplicative factor on design seismic action, for the design of the non-dissipative members (or structural system overstrength) (6.6.3 and 6.8.3 – EN1998-1)

STRUCTURAL

ACTIONS

DESIGN FOR

MODELLING

ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE

ASSESSMENTS

GRAVITY LOADING

SEISMIC DESIGN

CONFIGURATION

Structural analysis

• Seismic load combinations:

- Serviciability Limit State (SLS):
 - $\sum G_{k,j} + \sum \psi_{2,i}Q_{k,i} + \nu q A_{Ed} + I$ (4.3.4 and 4.4.3.2 EN 1998-1)

q is behaviour factor considered for assessment of displacements induced by the design seismic action resulted from a linear elastic analysis (4.3.4 – EN1998-1)

v is the reduction factor which takes into account the lower return period of the seismic action associated with the damage limitation requirement and is considered 0.5.

- Limitation of interstorey drift $d_r v = 0.010 h (4.4.3.2c) EN 1998-1$
 - d_r is the design interstorey drift as defined in 4.4.2.2(2) EN1998-1
 - h is the storey height;
- Modal response spectrum elastic analysis (4.3.3.3 EN 1998-1) RSA2016
- Global imperfections considered by applying Equivalent Horizontal Force (EHF) at each story.

Structural analysis

Simplified approach

ACTIONS

STRUCTURAL

CONFIGURATION

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Moment diagrams from the seismic load combination

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Structural analysis

○ ULS

- Dissipative elements and structural over-strength:
 - Beams
 - Global structural dissipative behaviour - individual values of ratios $Ω_i$ do not exceed the minimum value by more than 25%
- Non-dissipative elements:
 - Columns
- Second order effects was not accounted as $\theta = 0.1$
- \circ SLS
 - Limitation of interstorey drifts: limit of 0.01h => increase sections
- T₁=0.85sec
- → MRF Design governed by serviceability limitations (drift limits)

2D	E	dge columr	IS	Central	Central columns		
Sto rey	Section	W _{pl} ×10 ³ (mm³)	MRd (kNm)	Section	W _{pl} × 10 ³ (mm ³)	MRd (kNm)	
1	HEM450	7094	2518	HEM500	7094	2518	
2	HEB450	3982	1413	HEM450	6331	2247	
3	HEB400	3232	1147	HEM450	6331	2247	
4	HEB400	3232	1147	HEM450	6331	2247	
5	HEB360	2683	952	HEM450	6331	2247	
6	HEB360	2683	952	HEB450	3982	1413	

Beams				Verificatio	on for non-	dis.
Section	W _{pl} ×10 ³ (mm ³)	MRd (kNm)	M _{Ed,E} /M Rd	Ω _i	$Ω_T =$ 1.1 $γ_{ov}$ Ωi.min	M _{Ed} /M _R d (central col)
IPE600	3512	1247	0.23	4.42	3.21	0.50
IPE600	3512	1247	0.27	3.67		0.48
IPE600	3512	1247	0.27	3.73		0.41
IPE550	2787	989	0.31	3.22		0.43
IPE400	1307	464	<u>0.43</u>	2.33		0.42
IPE360	1019	362	0.26	3.81		0.46

Storey	ds	d _s ×q	d _r	$d_r \times v$		0.01h	Δ%
Base	0	0	0	0	<	35	0.00
1	4	24	24	12	<	35	0.34
2	11	66	42	21	<	35	0.60
3	19	114	48	24	<	35	0.69
4	28	168	54	27	<	35	0.77
5	37	222	54	27	<	35	0.77
6	47	282	60	30	<	35	0.86

Equaljoints Plus Workshop, Prague, 20.06.2019

0

Structural analysis

STRUCTURAL CONFIGURATION

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

RBS (dog-bone) capacity check

Storey	Secti	on	N	/ _{pl.v}	A _s	A _v		h	b	t _w	t _f	r	M _{Rd.b}
			m	m ³	mm²	mm	2	mm	n mm	mm	mm	mm	kNm
1	IPE60	00	351	2000	15600	837	8	550) 210	11.1	17.2	24	1247
2	IPE60	00	351	2000	15600	837	8	550) 210	11.1	17.2	24	1247
3	IPE60	00	351	2000	15600	837	8	550) 210	11.1	17.2	24	1247
4	IPE5	50	278	7000	13400	723	4	500	200	10.2	16	24	989
5	IPE40	00	130	7000	8450	427	0	400) 180	8.6	13.5	21	464
6	IPE3	60	101	9000	7270	351	4	360) 170	8	12.7	21	362
Section	а	ł	C	s	g	b _{RBS}		4	A,	Walu	N	Pd PBS	M_{Ed}/M_{R}
						ND5			v	piy		Nu,ND5	d.RBS
	mm	m	m	mm	mm	mm	m	m²	mm ²	mm ³		(Nm	<u>d,RBS</u> -
IPE600	mm 126	m 41	m 2.5	mm 332.25	mm 42	mm 126	m 117	m ² 760	mm ² 6941	mm ³ 240474	6	(Nm 854	d,RBS - 0.33
IPE600 IPE600	mm 126 126	m 41 41	m 2.5 2.5	mm 332.25 332.25	mm 42 42	mm 126 126	m 117 117	m ² 760 760	mm ² 6941 6941	mm ³ 240474 240474	6 6	«Nm 854 854	d,RBS - 0.33 0.40
IPE600 IPE600 IPE550	mm 126 126 120	m 41 41	m 2.5 2.5 75	mm 332.25 332.25 307.5	mm 42 42 40	mm 126 126 120	m 117 117 100	m ² 760 760 058	mm ² 6941 6941 5893	۳m ³ 240474 240474 189264	6 6 3	KU,KUS KNM 854 854 672	- 0.33 0.40 0.39
IPE600 IPE600 IPE550 IPE550	mm 126 126 120 120	m 41 41 37	m 2.5 2.5 75 75	mm 332.25 332.25 307.5 308	mm 42 42 40 40	mm 126 126 120 120	m 117 117 100 100	m ² 760 760 058	mm ² 6941 6941 5893 5893	mm ³ 240474 240474 189264 189364	 6 6 3 3	KU,KB3 KNM 854 854 672 672	d,RBS - 0.33 0.40 0.39 0.46
IPE600 IPE600 IPE550 IPE550 IPE400	mm 126 126 120 120 108	m 41 41 37 37 30	m 2.5 2.5 75 75 00	mm 332.25 332.25 307.5 308 258	mm 42 42 40 40 36	mm 126 126 120 120 108	m 111 111 100 61	m ² 760 760 058 058 24	mm ² 6941 6941 5893 5893 3330	mm ³ 240474 240474 189264 189364 86263		«Nm 854 854 672 672 306	d,RBS - 0.33 0.40 0.39 0.46 0.65

Ο

Structural analysis

 $\sum M_{Rc} \ge 1.3 \sum M_{Rb}$

Weak beam – strong column check

storey)

STRUCTURAL CONFIGURATION

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS M_{Rc} is the sum of the design values of the moments of resistance of the columns framing the joint M_{Rb} is the sum of the design values of the moments of resistance of the beams framing the joint

to prevent formation of a soft storey plastic mechanism in multi-

storey buildings, 4.4.2.3(4) - EN 1998-1 at all joints (except last

Edge column									
Storey	ΣM _{Rc}	ΣM _{Rb}	$\Sigma M_{Rb,RBS}$	1.3× ΣM _{Rb}	1.3× ΣMR _{b,RBS}	ΣΜ _{Rc} / 1.3ΣΜ _{Rb}	ΣM _{Rc} / 1.3× ΣM _{Rb.RBS}		
1	3932	1247	854	1621	1110	2.43	3.54		
2	2561	1247	854	1621	1110	1.58	2.31		
3	2295	1247	854	1621	1110	1.42	2.07		
4	2100	989	672	1286	874	1.63	2.40		
5	1905	464	306	603	398	3.16	4.78		
6	952	362	239	470	311	2.03	3.06		

	Central Column										
	214	214	214	1.3×	1.3×	ΣM _{Rc} /	ΣM _{Rc} /				
Storey	ZIVI _{Rc}	ZIVI _{Rb}	ZIVI _{Rb,RBS}	ΣMRb	ΣM _{Rb.RBS}	1.3ΣM _{Rb}	$1.3\Sigma M_{Rb,RBS}$				
1	4766	2494	1707	3242	2220	1.47	2.15				
2	4495	2494	1707	3242	2220	1.39	2.03				
3	4495	2494	1707	3242	2220	1.39	2.03				
4	4495	1979	1344	2572	1748	1.75	2.57				
5	3661	928	612	1206	796	3.03	4.60				
6	1414	723	478	941	622	1.50	2.27				

Equaljoints Plus Workshop, Prague, 20.06.2019

ACTIONS

DESIGN FOR GRAVITY LOADING

SEISMIC DESIGN

MODELLING ASSUMPTIONS

STRUCTURAL ANALYSIS

COMPARATIVE ASSESSMENTS

Structural analysis

Refined approach

- The same verifications were made as for the simplified case in terms of dissipative elements and structural over-strength, weak beam strong column, capacity at RBS, et.c
- T₁=1.27sec
- → MRF Design governed by serviceability limitations (drift limits)

Storey	d _r ×v
1	0
2	9
3	18
4	21
5	24
6	24
	<35

Moment diagrams from the seismic load combination

Comparative assessment

Franrišek Wald, Marta Kuříková, Matyáš Kožich

Czech Technical University in Prague

20.06.2019

