

Connection design by Component Based Finite Element Method

Lecture 3 Joint of hollow to open section

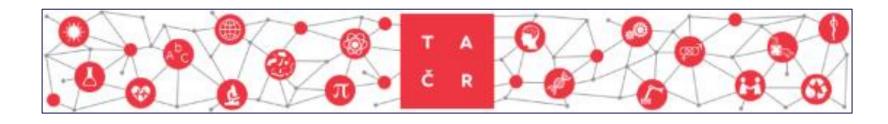
List of lectures

- 1) Beam to column moment connection
- 2) Hollow section joints
- 3) Joint of hollow to open section
- 4) Column base
- 5) Seismically qualified joints
- 6) Joints at elevated temperature

Aims and objectives

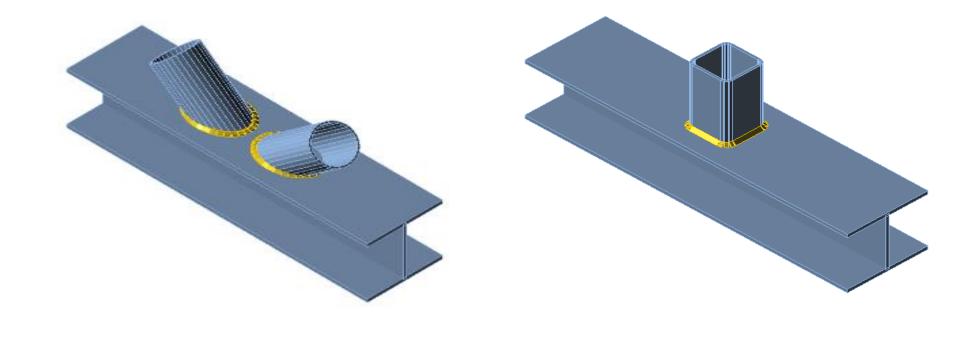
- Provide information on modeling hollow section connections
- Provide an online training to students and engineers
- Illustrate the differences between numerical simulation and numerical calculation, e.g., between research-oriented FEM and design-oriented FEM.
- Show the process of Validation & Verification
- Offer a list of references relevant to the topic

Lecture 4


Joint of hollow to open section

František Wald, Marta Kuříková, Martin Kočka, Abhishek Ghimire, Lubomír Šabatka, Jaromír Kabeláč, Drahoš Kojala

Tutorial


- This lecture describes the principles of FEM modeling of hollow section joints using Component Based FEM (CBFEM).
- Failure mode models are presented for one of the simplest cases on hollow to open section joints.
- An overview of both simple and FEM analysis and modeling is presented.
- Validation, verification and benchmark cases using Component Based Finite Element Method are presented.

Material was prepared under the R&D project MERLION II supported by Technology Agency of the Czech Republic, project No TH02020301.

• The purpose of this lecture is to explain the design of connections of hollow sections to open sections, as a simple case of a very large subject.

Outline of the lecture

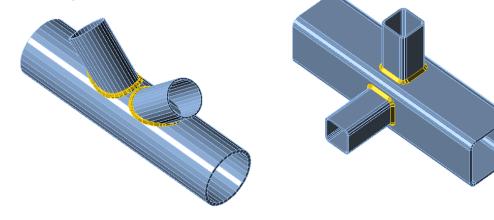
• Introduction - hollow section joints

• Failure mode method

- o General
- Influencing joint parameters
- Component method
- Hollow to open joints
- Assessment I

• Component based FE method

- Principles
- Validation
- Verification
- o Benchmark case
- Assessment II
- Summary


Hollow section joints

Lecture 4

Joint of hollow to open section

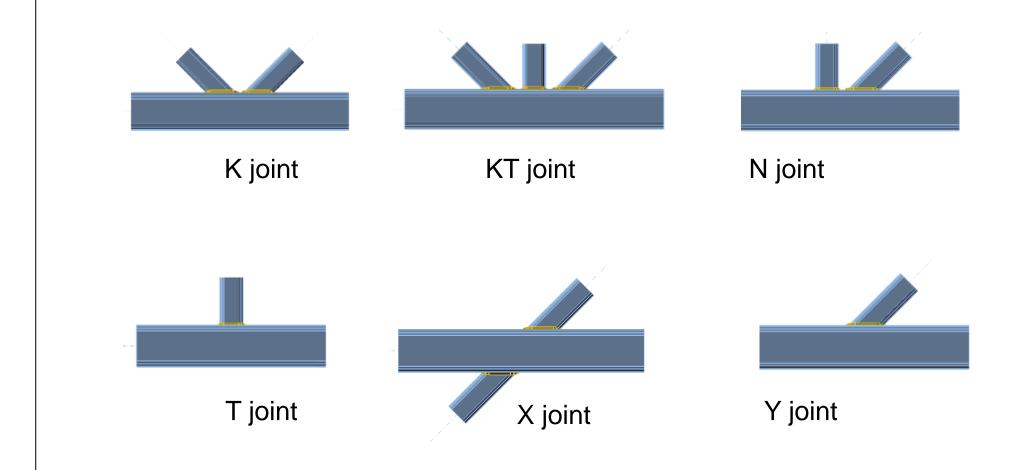
Geometry

- The welded joints of circular, square or rectangular hollow sections can be either:
 - o Uni-planar
 - o Multi-planar

 The combination of hollow sections with open sections are used in the uni-planar joints.

9

- Introduction
 - Failure mode meth.
 - General
 - Joint parameters
 - Component method
 - Hollow to open
 - Assessment I


CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Basic geometrical types

• The typical uni-planar joints

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

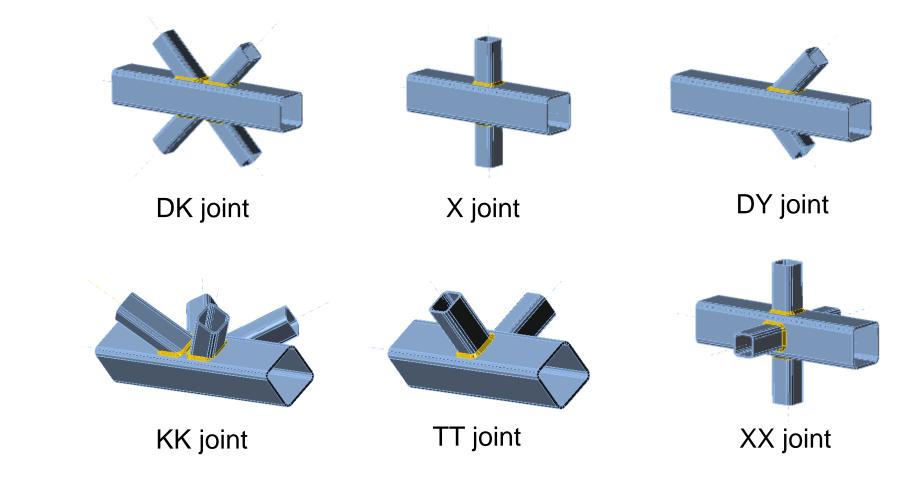
Assessment I

CBFEM

Principles

Validation

Verification


Benchmark case

Assessment II

Basic geometrical types

• The typical multi-planar joints

Introduction

Failure mode meth.

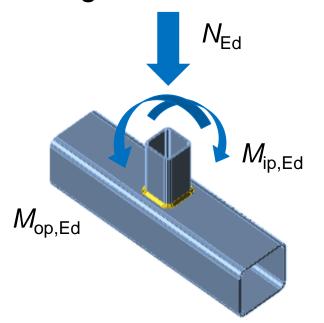
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II

Loading

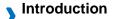
 The design resistance of the joint is expressed as maximum axial or moment resistances for the brace.


- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I


CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

 The moment resistance can be reached for in-plane or out-of-plane loading.



Design of welds

- The welds are preferably designed for full resistance of joint not be the weakest part. I.e. the design resistance of the weld, per unit length of perimeter of a brace member, should not normally be less than the design resistance of the cross-section of that member per unit length of perimeter.
- **The full seam butt weld** is recommended for $t_i > 8$ mm with $a = t_i$
- **The fillet welds** are recommended only for members thickness $t_i \ 2 \ 8 \ mm$ with the weld effective thickness *a* for element thickness t_i and for steel

S 235 as	$a = 0,92 t_{i}$
S 275 as	$a = 0,96 t_{i}$
S 355 as	<i>a</i> = 1,10 <i>t</i> _i
S 420 as	<i>a</i> = 1,42 <i>t</i> _i
S 460 as	$a = 1.48 t_{i}$

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

Validation

Verification

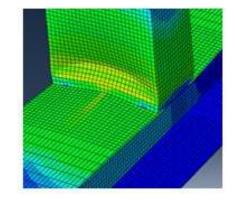
Benchmark case

Assessment II

Design methods

Design resistance of joints may be determined by:

o Failure mode method based on


 Curve fitting procedures with derived joint parameters based on analytical models

Component method

 Using lever arms and component resistances determined according to a failure mode procedure

• Finite element method

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

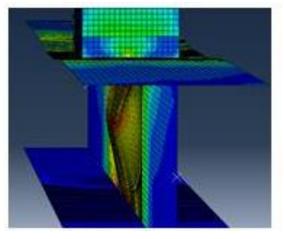
CBFEM

Principles

Validation

Verification

Benchmark case


Assessment II

Finite element method

 Research oriented model by numerical experiments with geometric and material non-linear analysis with imperfections and evaluation of safety as mechanical experiments according to EN1990.

- Design oriented model with geometric and material non-linear analysis using design material model.
 - The Component based FEM (CBFEM) is design procedure combining analytical models for components and FE analysis of plates.

Introduction

Failure mode meth.

General

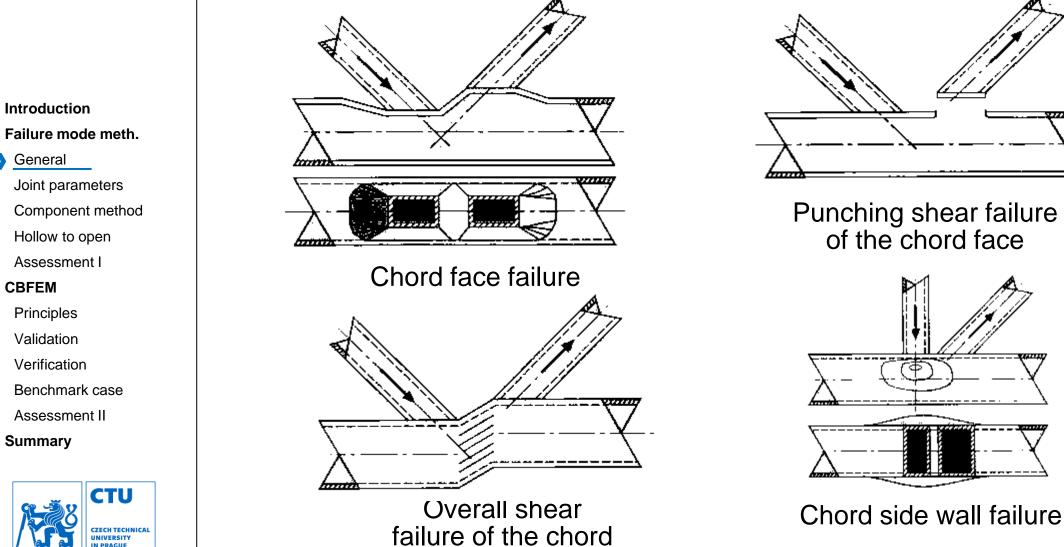
Joint parameters

- Component method
- Hollow to open

Assessment I

CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II

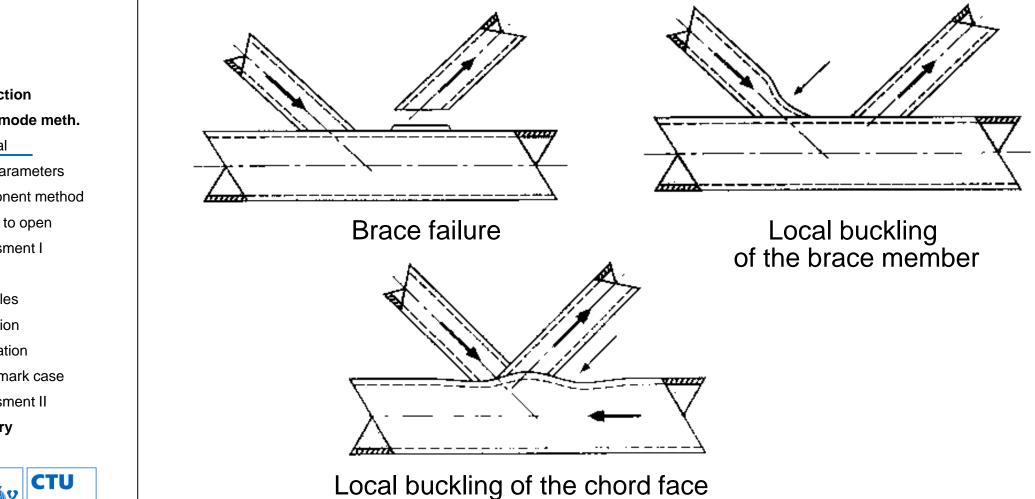

Failure mode model

Lecture 4

Joint of hollow to open section

Failure modes on chord

demonstrated on rectangular hollow sections (RHS)


IVERSITY

PRAGUE

17

Failure modes on brace

demonstrated on rectangular hollow sections (RHS)

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

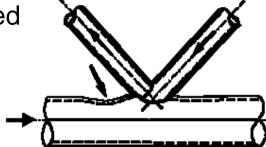
CBFEM

Principles

Validation

Verification

Benchmark case


Assessment II

Excluded modes of failure

- Weld failure
 - Excluded by use efficient throat thickness of the welds

- Lamellar tearing
 - Excluded by material properties
- Local buckling of the chord or brace sections
 - Excluded by using sections with can be classified to a maximum cross section class 2
- perties ord or brace sections

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

Validation

Verification

Benchmark case

Assessment II

Design principle

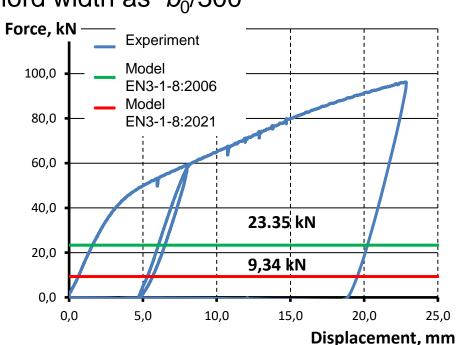
- Welds are designed for full sectional resistance.
- Geometrical types are selected.
- Range of validity is prepared based on available experiments for each geometrical type.
- Limited number of failure modes is possible by each geometrical type.
- For each geometrical type is prepared for each failure mode a **curve fitting prediction** of resistance.
- The influencing joint parameters are derived based on five analytical models.

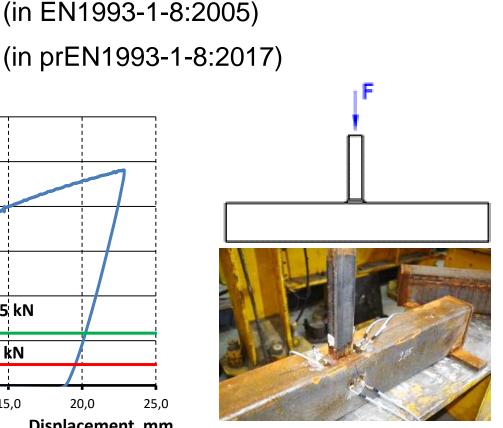
Introduction

Failure mode meth.

- General
 - Joint parameters
 - Component method
 - Hollow to open
 - Assessment I

CBFEM


- Principles
- Validation
- Verification
- Benchmark case
- Assessment II



Experiments and design resistance by curve fitting procedures

The design resistance is derived from experiments from

- Ultimate load
- Deformation limit
 - chord width as $b_0/300$

Example behaviour and curve fitting predictions of joint with RHS chord 150 x 100 x 4 mm and brace 50 x 30 x 4 mm

Introduction

Failure mode meth.

- General
 - Joint parameters
 - Component method
 - Hollow to open
 - Assessment I

CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II

Summary

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

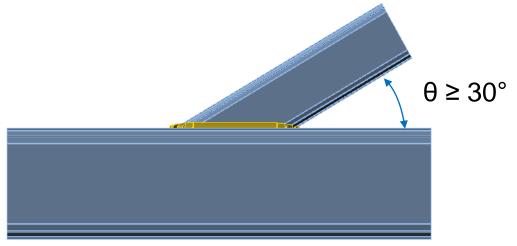
CBFEM

Principles

Validation

Verification

Benchmark case


Assessment II

Summary

General limits of application

- The members of lattice structures should satisfy the requirements:
- Class 1 (or Class 2) cross-section only
- The angle between the brace and the chord should be larger than 30°

Analytical Models for determination of influencing joint parameters

- The curve fitting procedure is used for evaluation of joint's resistance on each possible failure mode.
- For the determination of the influencing joint
 parameters of welded joints between rectangular hollow sections are used analytical models:
 - Yield line

Introduction

General

CBFEM

Principles

Validation Verification

Benchmark case

СТU

Assessment II

Summary

Failure mode meth.

Joint parameters

Hollow to open Assessment I

- o Punching shear
- Brace effective width
- Chord side wall bearing or buckling
- Chord shear

23

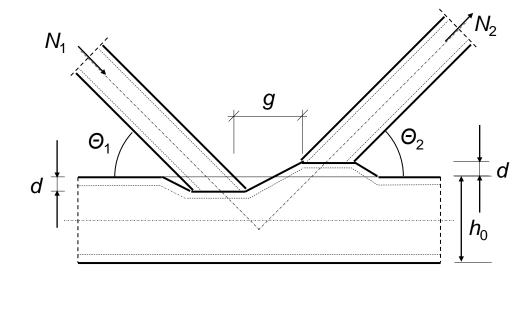
Yield line model

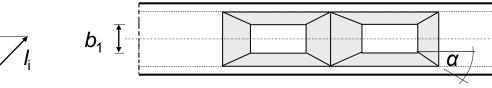
for the influencing joint parameters

 The typical case of searching for influencing parameters by yield line model is chord face failure, as is shown below on deformed shape of K joint of RHS after experiment and its cut.

Failure mode meth. General Joint parameters

Introduction


- Component method
- Hollow to open
- Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary



Geometry of K shape joint of rectangular hollow section

 In principle, the yield line model is an upper bound approach

K

- Various yield line pattern have to be examined in order to obtain the lowest capacity
- Strain hardening effects and membrane action not considered

- Introduction
- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

 b_0

Limits of application of Yield line model

For joints with

- $_{\odot}\,$ small β ratios the deformations may be too high to realise the yield line pattern
- medium β ratios the yield line model gives a good estimate of the chord face plastification capacity
- high β ratios prediction of an infinite strength

where β is the ratio of the mean diameter or width of the brace members, to that of the chord.

For T, Y and X joints it is

 d_1/d_0 ; d_1/b_0 or b_1/b_0 .

brace diameter/chord diameter; brace diameter/chord width or brace width/chord width

Introduction Failure mode meth.

General

Joint parameters

Component method

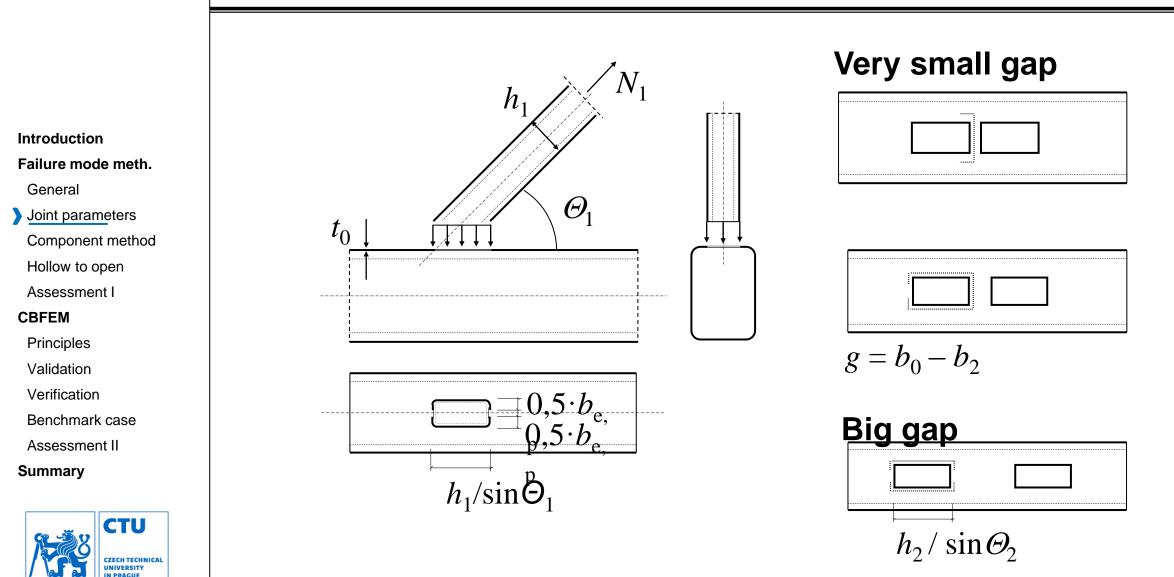
Hollow to open

Assessment I

CBFEM

Principles

Validation


Verification

Benchmark case

Assessment II

Geometry of punching shear model for the influencing joint parameters

Punching shear model for the influencing joint parameters

- Punching shear is caused by the brace load component perpendicular to the chord face.
- Since of the non-uniform stress distribution at connection and not sufficient deformation capacity may be available, only parts of connection perimeters are effective for punching shear failure.
 - Therefore the punching shear criterion is

$$N_1 = \frac{f_{y0}}{\sqrt{3}} t_0 \left(\frac{2h_1}{\sin\Theta_1} + 2b_{e,p}\right) \frac{1}{\sin\Theta_1}$$

- Introduction Failure mode meth. General
- Joint parameters
- Component method
- Hollow to open
- Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Brace effective width model for the influencing joint parameters

• Similar to punching shear failure but the complete brace load has to be taken into account.

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

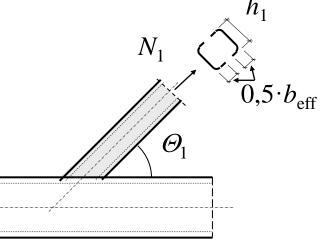
CBFEM

Principles

Validation

Verification

Benchmark case


Assessment II

Summary

 For a T, Y and X joint, the effective width criterion is

$$N_1 = f_{y1} t_1 (2h_1 + 2b_e - 4t_1)$$

• As for punching shear failure the gaps are important for the effective lengths.

Brace effective width model

for the influencing joint parameters

 For K-joints with gaps in the allowed range the brace effective width criterion is

$$N_2 = f_{y2} t_2 (2h_2 + b_2 + b_e - 4t_1)$$

- No regulations for small gaps available
- For big gaps the criterion for T-, Y- and X-joints can be used

General

Joint parameters Component method

Hollow to open

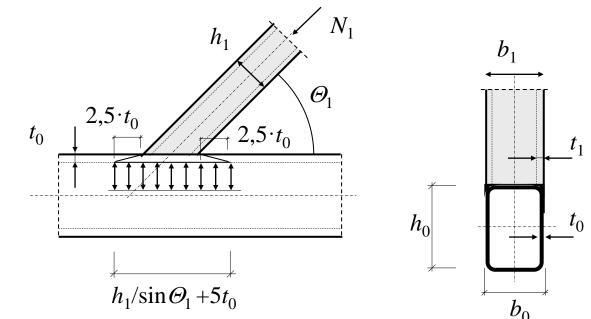
Assessment I

CBFEM

Principles

Validation

Verification


Benchmark case

Assessment II

Chord side wall bearing/buckling model

- for the influencing joint parameters
- T, Y and X joints with a high β ratio generally fail by yielding or buckling of the chord side walls.

- Introduction Failure mode meth. General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

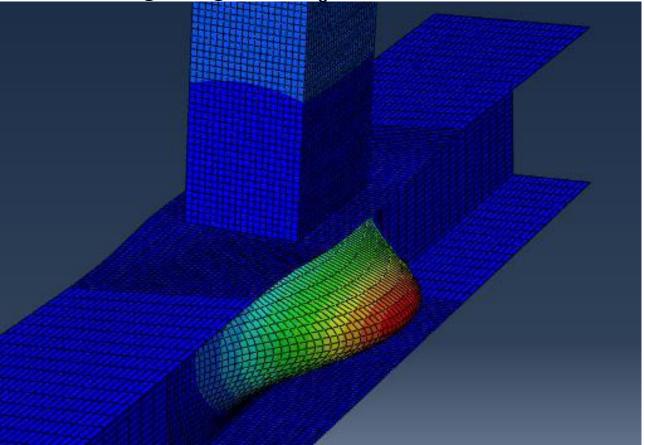
CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

• For joints with $\beta = 1,0$ the yield capacity of the chord webs is determined as

$$\mathbf{N}_1 = 2\mathbf{f}_{y0} \cdot \mathbf{t}_0 \left(\frac{\mathbf{h}_1}{\sin \Theta_1} + 5\mathbf{t}_0\right) \cdot \frac{1}{\sin \Theta_1}$$

Chord side wall bearing/buckling model


for the influencing joint parameters

• For slender walls the yield stress f_{y0} is replaced by a buckling stress f_k which is obtained from the European buckling curve *a*

- Introduction Failure mode meth. General
- Joint parameters
- Component method
- Hollow to open
- Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

• For a Euler strut with a buckling length of $h_0 - 3t$

Chord shear model for the influencing joint parameters

Summary

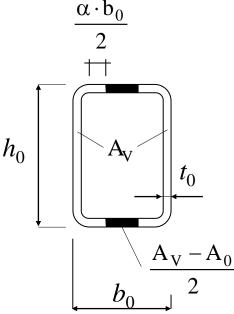
CBFEM

Resistance is calculated based on the basic formulae for plastic design.

Chord shear model

for the influencing joint parameters

• The plastic shear load capacity is


$$\mathsf{V}_{\mathsf{pl}} = \frac{\mathsf{f}_{\mathsf{y0}}}{\sqrt{3}} \cdot \mathsf{A}_{\mathsf{y0}}$$

with an effective shear area $A_V = (2h_0 + \alpha \cdot b_0) t_0$

• Based on

the Huber Hencky-Von Mises criterion the following interaction formula for shear resistance of the chord web

$$N_{o.gap} \le (A_0 - A_V) f_{y0} + A_V f_{y0} \sqrt{1 (V_{Sd} V_{pl})^2}$$

Introduction

General

Failure mode meth.

Joint parameters

Hollow to open

Assessment I

CBFEM

Principles

Validation Verification

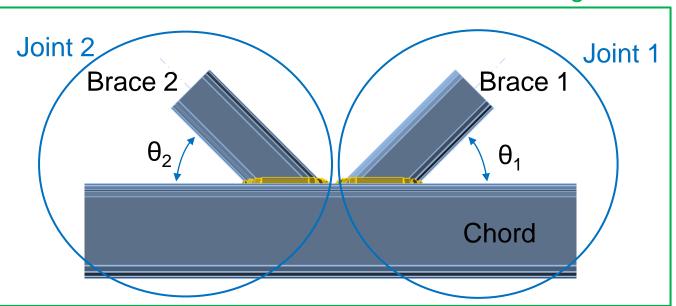
Benchmark case

Assessment II

Summary

Component method

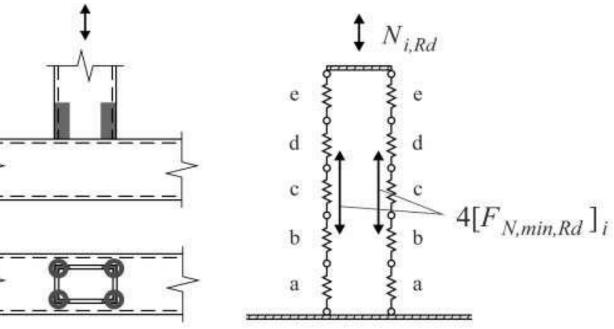
Component based approach for hollow section joints


Lecture 4

Joint of hollow to open section

Principle

- Component based approach for hollow section design is formal reorganisation of equations to be engineering user friendly.
- Failure modes are represented as components.
- The same equations are used by curve fitting approach but in different formulation.



- Introduction Failure mode meth. General
 - Joint parameters
- Component method
 - Hollow to open
 - Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Defined lever arms and components (failure modes)

- \circ $k_{\rm fa}$ factors transferred to
 - \circ *b*_{eff} effective widths
 - \circ r_{a} lever arm
- The interaction of load limits the application.

Introduction

Failure mode meth.

General

Joint parameters

Component method

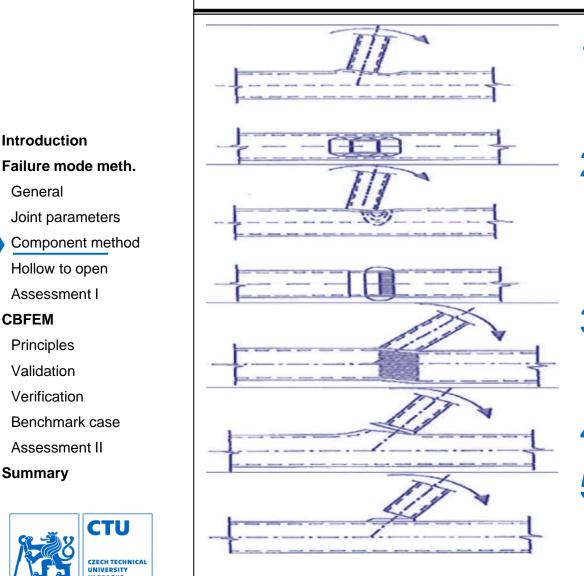
Hollow to open

Assessment I

CBFEM

Principles

Validation


Verification

Benchmark case

Assessment II

7 failure modes are modelled as 7 components

Introduction

General

CBFEM

Principles Validation Verification

Joint parameters

Hollow to open Assessment I

Benchmark case

СТИ

VERSIT

Assessment II

Summary

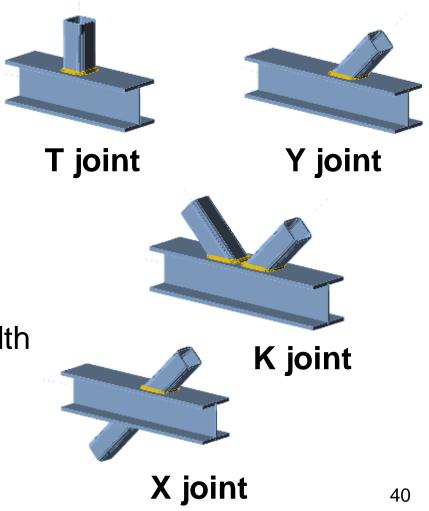
- 1) Chord face in bending
- 2) Chord side wall in tension/ compression
- 3) Chord side wall in in shear
- 4) Chord face under punching shear 5) Brace flange and web in tension/compression

38

Application of principles to hollow to open joints

Lecture 4

Joint of hollow to open section


Hollow to open joints as example of application

Types of joint available in failure mode method
 T, Y, X, K and K gap joint

- Introduction
- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
 - Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

 Two failure modes only • Brace failure Chord web failure Chord shear failure (only for K joint) Range of validity 0 Class 1 and 2 with limited flange width Influencing parameters Ο $b_{\rm eff}$ brace effective width chord web effective width b_{w}

Design resistance

of welded joints between RHS or CHS brace members and I or H section chords by failure mode method

\circ Brace failure

• Chord web failure

$$N_{\rm i,Rd} = 2C_{\rm f}f_{\rm yi}t_{\rm i}b_{\rm eff}/\gamma_{\rm M5}$$

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

Validation

Verification

Benchmark case

Assessment II

Summary

 $N_{i,Rd} = \frac{f_{y0}t_wb_w}{\sin\theta_i} / \gamma_{M5}$ • For K gap joints also chord web failure
• θ_1

Design resistance

of welded joints between RHS or CHS brace members and I or H section chords by failure mode method

Chord shear failure for K gap joints and for X joints with $\cos \theta_{\rm i} > h_{\rm i}/h_0$ use $\alpha = 0$ $N_{\rm i,Rd} = \frac{f_{\rm y0}A_{\rm V,0,gap}}{\sqrt{3}\sin\theta} / \gamma_{\rm M5}$ $N_{0,\text{gap,Rd}} = \left[\left(A_0 - A_{V,0,\text{gap}} \right) f_{y0} + A_{V,0,\text{gap}} f_{y0} \sqrt{1 - \left(\frac{V_{0,\text{gap,Ed}}}{V_{0,\text{gap,pl}}} \right)^2} \right] / \gamma_{\text{M5}}$ $A_{V,0,\text{gap}} = A_0 - (2 - \alpha) b_0 t_0 + (t_w + 2r) t_0$ $\alpha = \sqrt{\frac{1}{1 + (4g^2)/(3t_0^2)}}$ $V_{0,\text{gap,pl}} = \frac{f_{y0}}{\sqrt{3}} A_{v,0,\text{gap}}$ b₀ $V_{0,\text{gap,Ed}} = \left(N_{i,\text{Ed}}\sin\theta_i\right)_{\text{max}}$

General Joint parameters

Failure mode meth.

Introduction

Component method

Hollow to open Assessment I

CBFEM

Principles

Validation

Verification

Benchmark case

Assessment II

Effective width

of welded joints between RHS or CHS brace members and I or H section chords for failure mode method

For RHS braces

Introduction

Failure mode meth.

General

Joint parameters

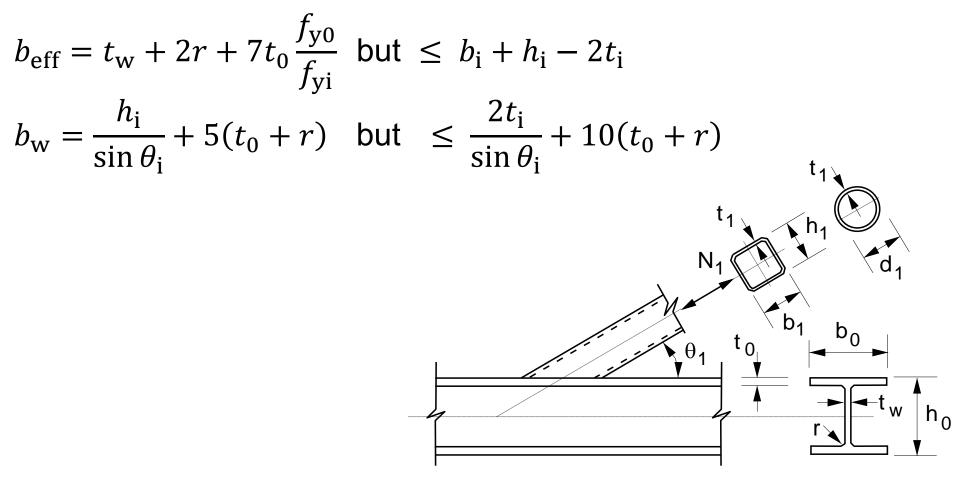
Component method

Hollow to open

Assessment I

CBFEM

Principles


Validation

Verification

Benchmark case

Assessment II

Range of validity

for welded joints between CHS or RHS brace members and I or H section chord members for failure mode method

	Type of	Joint parameters							
	joint	Chord web width			h_i/b_i	b_0/t_0	Gap		
	Jenne	d_{w}	Compression	Tension	-17 - 1		Cup		
Introduction Failure mode meth.	x	Class 1 and $d_{ m w} \leq 400~ m mm$	Class 1 or 2 and $\frac{h_i}{1} \le 35$	$\frac{h_{\rm i}}{t_{\rm i}} \le 35$			_		
General Joint parameters Component method	T or Y	Class 1 or 2 and	$\begin{vmatrix} t_i \\ b_i \\ \frac{b_i}{t_i} \le 35 \end{vmatrix}$	$\frac{b_{\rm i}}{t_{\rm i}} \le 35$	$0,5 \le h_{\rm i}/b_{\rm i} \le 2,0$	Class 1 or 2			
Hollow to open Assessment I CBFEM	K gap	$d_{\rm w} \le 400 \; { m mm}$	$\begin{vmatrix} t_{\rm i} \\ \frac{d_{\rm i}}{t_{\rm i}} \le 50 \end{vmatrix}$	$\frac{d_{\rm i}}{t_{\rm i}} \le 50$			$g \geq t_1 + t_2$		
Principles Validation Verification	t ₁	h_1 b_1	t_2 h_2				, \		
Benchmark case Assessment II Summary		t_1 N_1 g θ_1 g θ_1 g θ_1 g θ_1 g	θ_2 t_0 θ_0		θ_1		' 		
СТО				twh ₀			∾ h _o		

CBFEM

Component approach

of welded joints between RHS or CHS brace members and I or H section chords by failure mode method

Brace failure from failure mode method

 $N_{i,Rd} = 2C_f f_{vi} t_i b_{eff} / \gamma_{M5}$

$$b_{\rm eff} = t_{\rm w} + 2r + 7t_0 \frac{f_{\rm y0}}{f_{\rm yi}}$$
 but $\leq b_{\rm i} + h_{\rm i} - 2t_{\rm i}$

can be overwritten for component method as

- $F_{\rm e,Rd} = C_{\rm f} f_{\rm yi} t_1 b_{\rm eff} / \gamma_{\rm M5}$
- $N_{1,\mathrm{Rd}} = 4[F_{\mathrm{N,min,Rd}}]$

$$b_{\rm eff,e} = 0.5 b_{\rm eff}$$

h

 b_0

N

θ

Introduction Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

Validation

Verification

Benchmark case

Assessment II

Component approach

of welded joints between RHS or CHS brace members and I or H section chords by failure mode method

Chord web failure from failure mode method

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

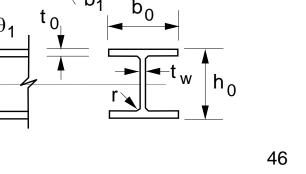
Assessment I

CBFEM

Principles

Validation

Verification


Benchmark case

Assessment II

Summary

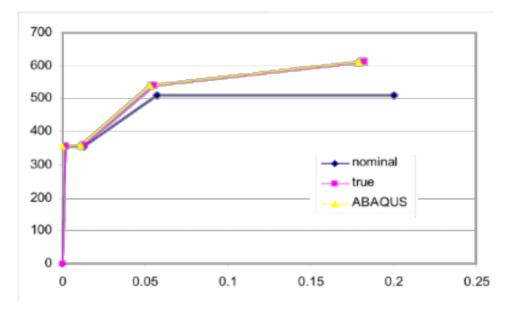
 $N_{\rm i,Rd} = \frac{f_{\rm y0}t_{\rm w}b_{\rm w}}{\sin\theta_{\rm H}}/\gamma_{\rm M5}$ $b_{\rm w} = \frac{h_{\rm i}}{\sin \theta_{\rm i}} + 5(t_0 + r) \text{ but } \le \frac{2t_{\rm i}}{\sin \theta_{\rm i}} + 10(t_0 + r)$ $K_{\text{N.ch.b}} = 1,0; K_{\text{b.ch.b}} = 1,0; t_0 = t_w/2$ can be overwritten for component method as $N_{1,\text{Rd}} = 2 K_{\text{N,ch,b}} K_{\text{N,ch,b}} \frac{f_{\text{y0}} t_0 b_{\text{w}}}{\sin \theta_{\text{H}}} / \gamma_{\text{M5}}$ $N_{1,\mathrm{Rd}} = 4[F_{\mathrm{N,min,Rd}}]$ $b_{\text{eff.}e} = b_w / \sin \theta_i$

Assessment I

 What limits the application of the component method to the design of hollow section connections?

- Introduction
- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

- How are the analytically derived parameters applied in the failure mode design procedure?
- Which failure modes are excluded and how?
- Why are validity ranges used?
- Is the failure mode method the curve fitting method?
- What is the principle of the component method prepared on the basis of the failure mode method?
- What failure modes can be observed at joints between hollow and open sections?


Component Based Finite Element Method

Lecture 3

Joint of hollow to open section

Material

- Bilinear ideal elastic plastic diagram is used in design oriented models as CBFEM according to Ch. 7 in EN 1993-1-5:2006 and the slope of plastic branch is due to numerical stability E/1000.
- Plastic strain in plates is limited by 5%.
- In research oriented models is calculated the true stress-strain diagram from the material properties obtained in tensile tests, which is taking into account the necking of the coupon during its yielding before rupture.

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

Validation

Verification

Benchmark case

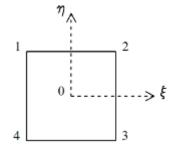

Assessment II

Plate and cross sections

• For modelling of plate are applied four node quadrangle shell elements with six degrees of freedom.

I.e. there are three translations and three rotations in every node.

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

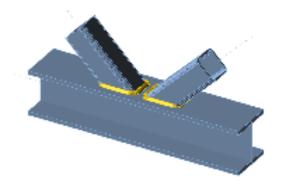
Assessment I

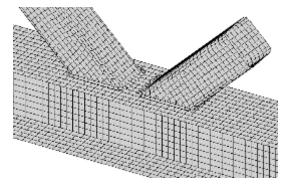
CBFEM

Principles

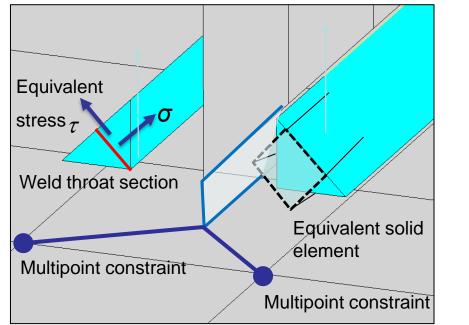
Validation

Verification


Benchmark case


Assessment II

Summary


 The cross section is build from plates with independent meshes, which are connected by constraints, to simplify the meshing procedure.

Welds

- Filled weld is modelled by equivalent solid elastoplastic element, which is added between plates to express the weld behaviour, see Fig. below.
- The element respects the weld throat thickness, position, and orientation to assure a good representation of weld deformation stiffness, resistance and deformation capacity.
- The plastic strain in weld is limited to 5% as in basic material.

Wald et al. (2016)

Introduction

Failure mode meth.

General

Joint parameters

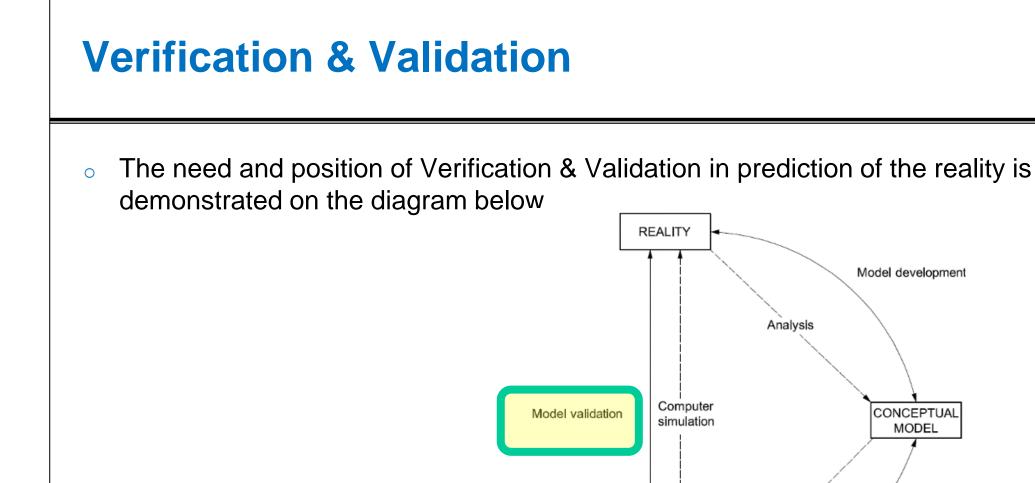
Component method

Hollow to open

Assessment I

CBFEM

Principles


Validation

Verification

Benchmark case

Assessment II

Principles

CBFEM

Introduction

General

Failure mode meth.

Joint parameters

Hollow to open Assessment I

Component method

- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

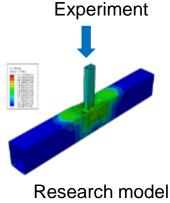
ISO/FDIS 16730 Fire safety engineering - Assessment, verification and validation of calculation methods, Geneva, 2008.

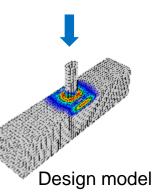
52

Programming

COMPUTERIZED MODEL Model verification

Design and research oriented model


Current approval of design models consist of


- 1) Experiments
- Research oriented FE model (ROFEM)
 - 2) Validated on experiments
 - 3) Numerical experiments
- Design numerical model (DOFEM)
 - Verified to numerical experiments and/or another design models
 - 5) Sensitivity study
 - 6) Validity range

• Benchmark case (BC)

 To help the users of model to check up its correctness and proper use

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

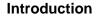
Assessment I

CBFEM

Principles

Validation

Verification


Benchmark case

Assessment II

Experiments with T joint of hollow to open section

• In compression

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

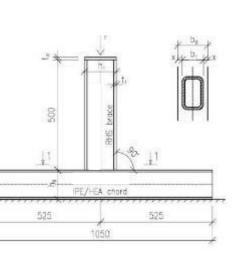
Assessment I

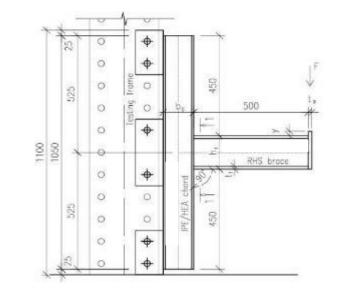
CBFEM

Principles

Validation

Verification


Benchmark case


Assessment II

Summary

• In bending

Experiments in compression

• Geometry

Specimen number	Chord (mm)					Brace (mm)					
	b o	hо	t _f	t w	r	Lo		h 1	b 1	t 2	L 1
A1	140	133	8,5	5,5	12	1050		150	100	12,5	500
A2	140	133	8,5	5,5	12	1050		150	100	5	50
A3	140	133	8,5	5,5	12	1050		80	140	4	50
A4	135	270	10,2	6,6	15	1050		150	100	12,5	50

• Failure modes

A3 - Brace failure A1 - Chord web failure

Introduction

- Failure mode meth.
- General
- Joint parameters

Component method

Hollow to open

Assessment I

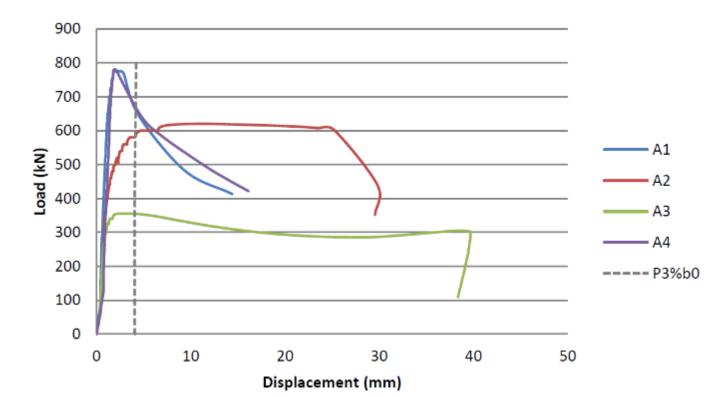
CBFEM

Principles

Validation

Verification

Benchmark case


Assessment II

Results of experiments in compression

Resistance	A1	A2	A3	A4
Failure	Chord web	Brace	Brace	Chord web
F peak load [kN]	775,14	620,01	355,24	780,71
F 3%b0 [kn]	643,99*	590,04	354,60	644,23 [°]
F ε 5% [kN]	646,08	540,36	324,83	685,24

* decreasing load after reaching the peak load

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

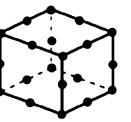
Principles

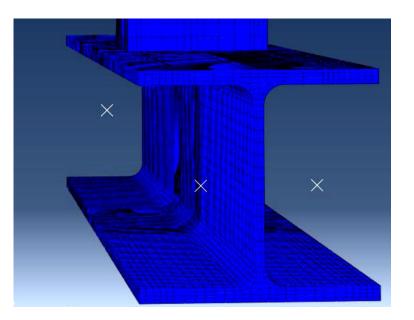
Validation

Verification

Benchmark case

Assessment II




Research oriented FEM

• ABAQUS 6.13

0

 Solid quadratic element (20-node brick, C3D20)

a strass-strain	multilinear material r	\mathbf{n}

С	В	F	Ε	M	

Principles

Introduction

General

Failure mode meth.

Joint parameters

Hollow to open Assessment I

Component method

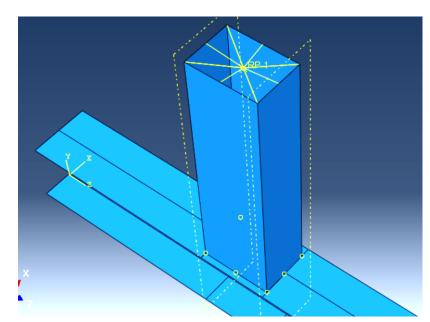
Validation

Verification

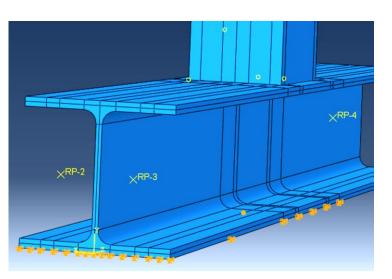
Benchmark case

Assessment II

Summary



True stress-strain multilinear material model


HEA	140	IPE2	270	RHS150	X100X5	RHS150X	100X12.5	RHS140	X80X4
O true [MPa]	Eplas,true	O true [MPa]	Eplas,true	O true [MPa]	ε plas,true	O true [MPa]	ε plas,true	O true [MPa]	Eplas,true
0	0	0	0	0	0	0	0	0	0
386,44	0	448,36	0	519 , 89	0	579 , 93	0	357 , 84	0
389,92	0,009	452,45	0,009	524 , 54	0,009	583,57	0,006	361 , 59	0,010
<mark>601,8</mark> 6	0,060	603,43	0,046	580 , 85	0,028	675,93	0,034	538,71	0,054
<mark>678,36</mark>	0,179	689,40	0,179	676,20	0,179	781, 56	0,179	611,04	0,179

Boundary conditions for research oriented FEM

- Bottom flange boundary condition
 - Rotation and translation restrain in all axis
- Load point
 - Coupling to top of braces edges

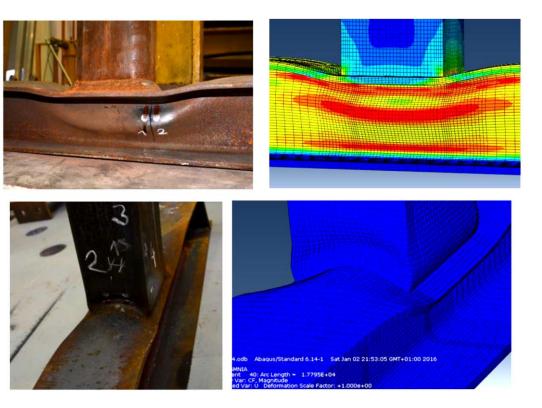
Introduction

Failure mode meth.

- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary


Validation of failure modes

 Both failure modes were well predicted

Resistance	A1	A2	A3	A4
Failure	Chord web	Brace	Brace	Chord web
P peak load [kN]	775,14	620,01	355,24	780,71
Р 3%b0 [kN]	643,99*	590,04	354,60	644,23*
Ρ ε5% [kN]	646,08	540,36	324,83	685,24

Failure of chord web, experiment A1

• Failure of brace, experiment A2

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

Validation

Verification

Benchmark case

Assessment II

Mesh sensitivity study

 The Figure below shows the importance of the mesh size to the prediction of behaviour of joint

Introduction

Failure mode meth.

General

Joint parameters

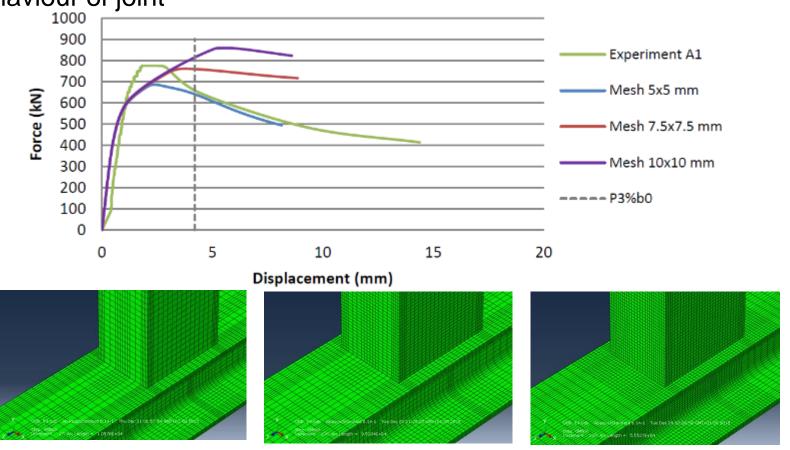
Component method

Hollow to open

Assessment I

CBFEM

Principles


Validation

Verification

Benchmark case

Assessment II

Description of local and global behaviour

Development of plastic zones

• The first yielding in the chord web

o 5% strain

Full plasticity

at the peak load

0

Assessment I

Introduction

General

Failure mode meth.

Joint parameters

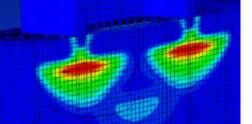
Hollow to open

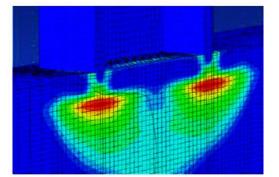
Component method

CBFEM

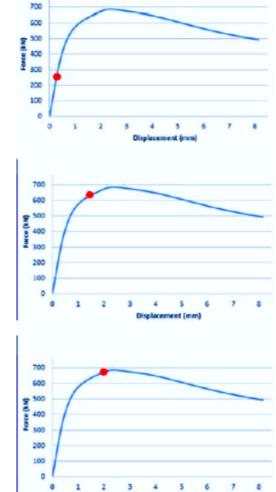
Principles

Validation


Verification


Benchmark case

Assessment II



Quality of prediction of resistance

- The validation should answer the quality of prediction on global behaviour namely in important points of design.
- Table below shows the prediction of resistance by deformation of upper surface b₀/300 (used by curve fitting models) and 5% of strain (used by numerical models) for experiment in compression A1 with failure of chord web.

	Experiment A1	ROFEM	%
P peak load (kN)	775,1	686,0	12%
P 5% strain (kN)	646,1	683,9	6 %
P 3%b0 (kN)	620,3	638,3	3 %

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

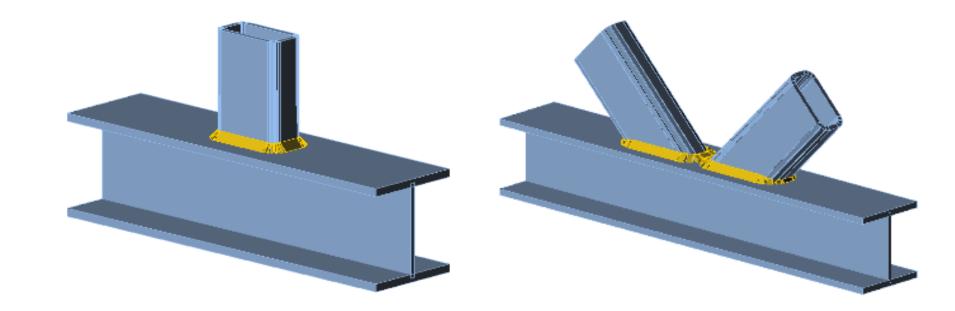
Assessment I

CBFEM

Principles

Validation

Verification


Benchmark case

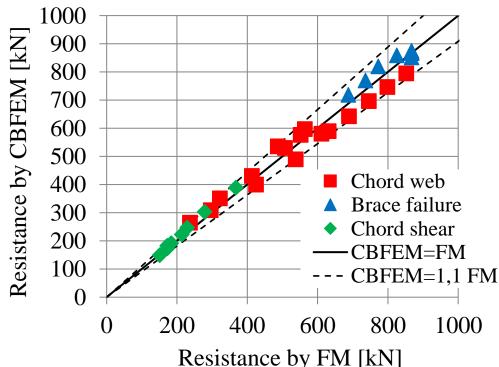
Assessment II

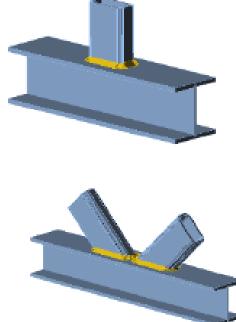
Verification of T-joint and K-joint CBFEM model to failure mode procedure

- A uniplanar T-joint and K-joint of a rectangular hollow section brace to an open section chord.
- The brace section is RHS 140x70x10.
- The chord sections are IPE, IPN, HEA a HEB.
- The brace is loaded in tension/compression or by in-plane bending moment.

Introduction

- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I


CBFEM


- Principles
- Validation
- Verification Benchmark case Assessment II
- Summary

Verification of T-joint and K-joint in compression

- The prediction by component based finite element method (CBFEM) is verified with the failure modes (FM) implemented in EN 1993-1-8:2005.
- Three failure modes occur in joints of the welded rectangular hollow sections to the open sections, e.g. the local yielding of brace (brace failure), the chord web failure and the chord shear.

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

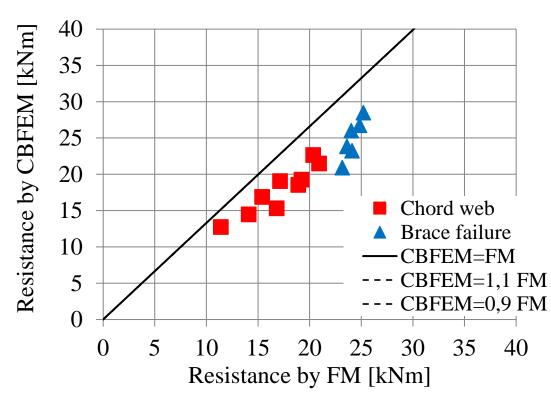
Assessment I

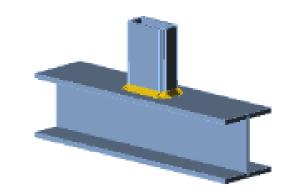
CBFEM

Principles

Validation

Verification


Benchmark case


Assessment II

Verification of T-joint in bending

- The prediction by component based finite element method (CBFEM) is verified with the failure modes (FM) implemented in EN 1993-1-8:2005.
- Two failure modes occur in joints of the welded rectangular hollow sections to the open sections, e.g. the local yielding of brace (brace failure) and the chord web failure.

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

Principles

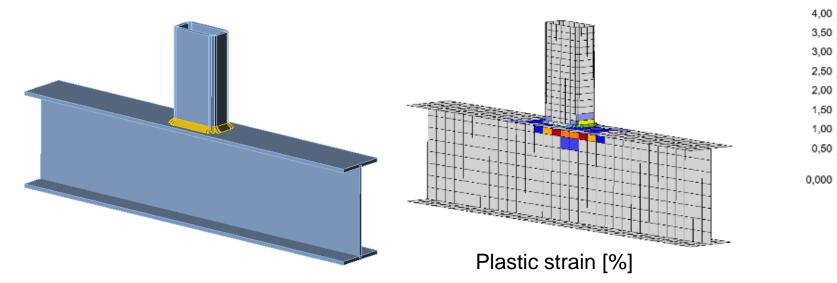
Validation

Verification

Benchmark case

Assessment II

Benchmark case


Uniplanar T-joint between RHS brace and I chord

• Input

- o Chord: IPE270, Steel S235
- o Brace: RHS 140x70x10, Steel S235
- Weld: Throat thickness $a_w = 10$ mm, Fillet weld around the brace

• Output

- Design resistance in compression/tension $F_{c,Rd}$ = 431 kN
- Collapse mode is full yielding of the chord web

Introduction

Failure mode meth.

- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

CBFEM

- Principles
- Validation
- Verification
- Benchmark case Assessment II

5,000

4.50

Assessment II

- How is modelled the material for research and how for design models?
- What elements are recommended for plates?
- How are modelled welds?
 - What is expected to be the accurate solution in mesh sensitivity study?
 - How differs validation from verification?
- What are two major purposes of benchmark cases in application of FEA analyses?

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

Assessment I

CBFEM

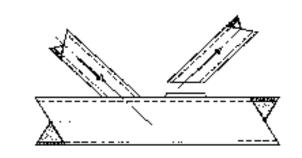
Principles

Validation

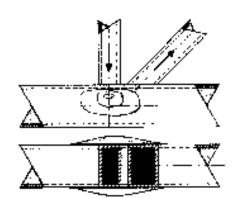
Verification

Benchmark case

Assessment II


Summary

Lecture 3


Joint of hollow to open section

Summary

- The hollow sections to open sections joints belongs to family of hollow section joints.
- There are three failure modes
 - Brace failure
 - Chord web failure
 - Chord web shear failure in case of gap

Brace failure

Shear failure of the chord

Chord web failure

Introduction

Failure mode meth.

General

- Joint parameters
- Component method
- Hollow to open
- Assessment I

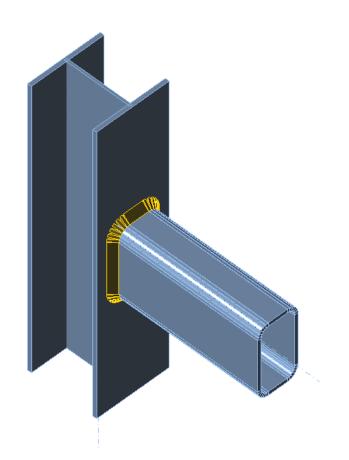
CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

- Introduction Failure mode meth. General Joint parameters Component method Hollow to open Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

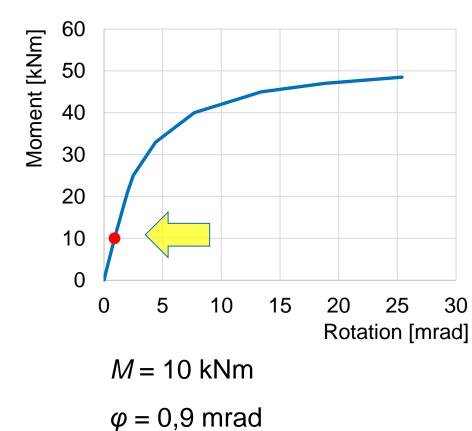
- The curve fitting methods are used to evaluate design resistances for each possible failure mode.
- The range of validity limits the application of the expressions to experimentally verified solutions only.
- The component-based approach is a great simplification for the design of some rectangular hollow sections.
- For design of circular hollow sections brings unpleasant complexity.
- It cannot be used for complex joints in general.

Prediction of global and local behaviour

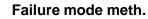

T joint of RHS brace and HEA chord

• Chord HEA180

- Introduction
- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary



- Brace RHS 180x100x8.8
- Steel S355
- Weld throat thickness 11 mm



Global and local behaviour

Elastic stage

General

Joint parameters

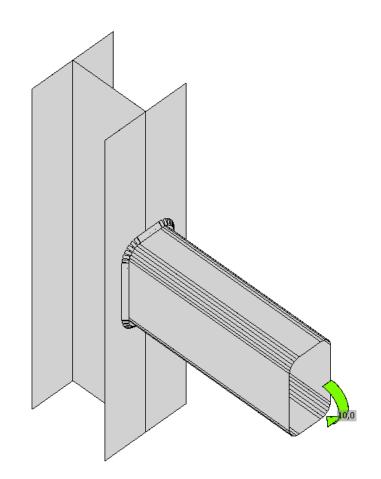
Component method

Hollow to open

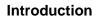
Assessment I

CBFEM

Principles


Validation

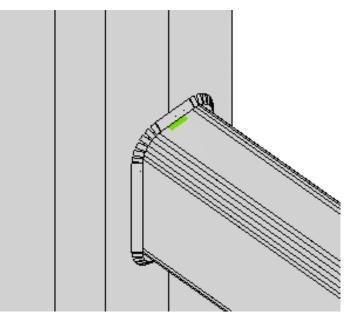
Verification


Benchmark case

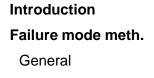
Assessment II

Plastification of the upper flange of RHS brace



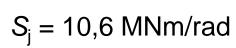

- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

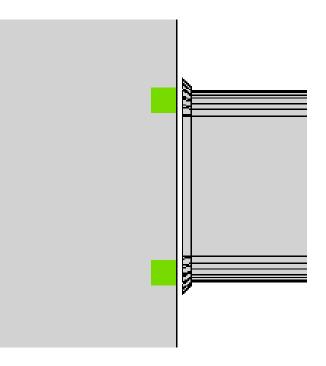
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary



- *M* = 19 kNm
- $\varphi = 1,8 \text{ mrad}$ $S_i = 10,7 \text{ MNm/rad}$

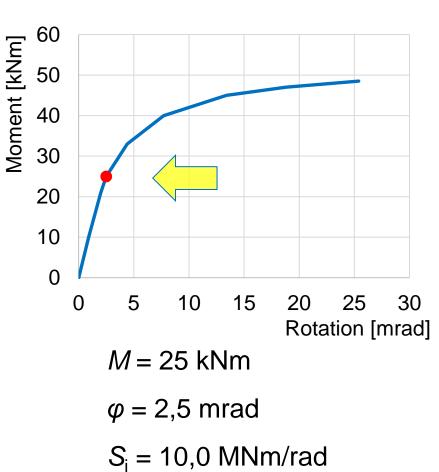
Initial plastification in the open section web

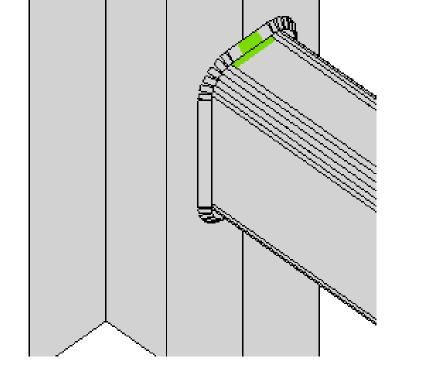



- Joint parameters
- Component method
- Hollow to open
- Assessment I

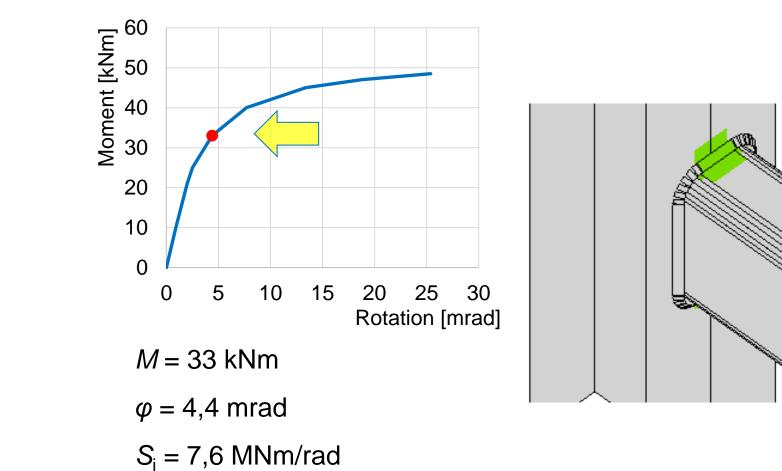
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Initial plastification in the weld



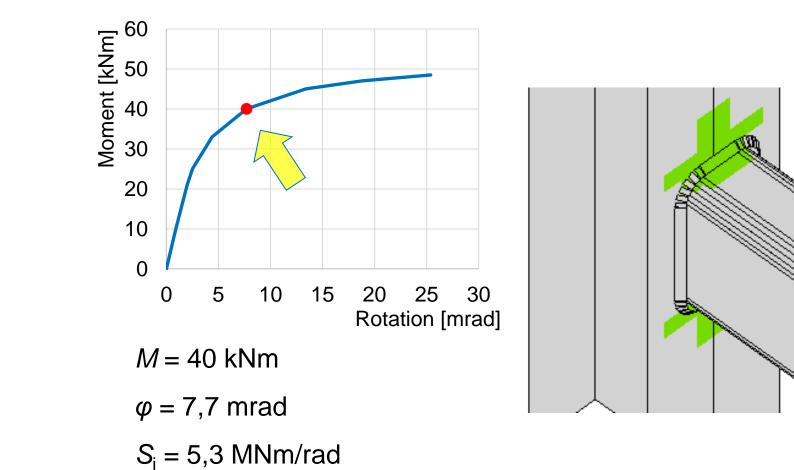


- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I


- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Initial plastification in the open section flange

Introduction


Failure mode meth.

- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Initial plastification in the RHS brace roundings

Introduction

Failure mode meth.

General

Joint parameters

Component method

Hollow to open

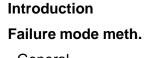
Assessment I

CBFEM

Principles

Validation

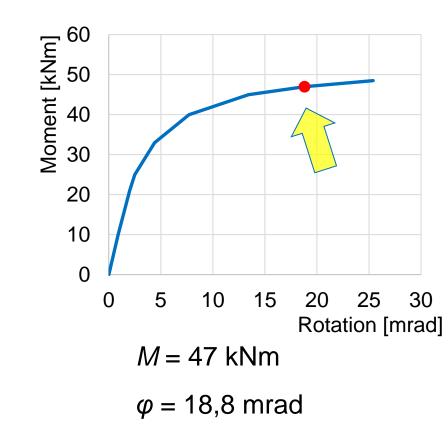
Verification


Benchmark case

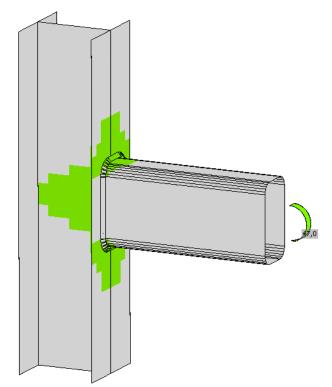
Assessment II

Summary

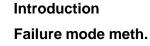
Full plastification through the open section web



- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I


CBFEM

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary



 $S_j = 2,6$ MNm/rad

The open section web reaches plastic strain 5%

General

Joint parameters

Component method

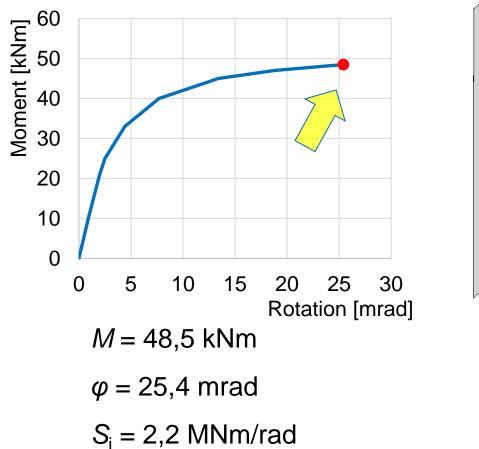
Hollow to open

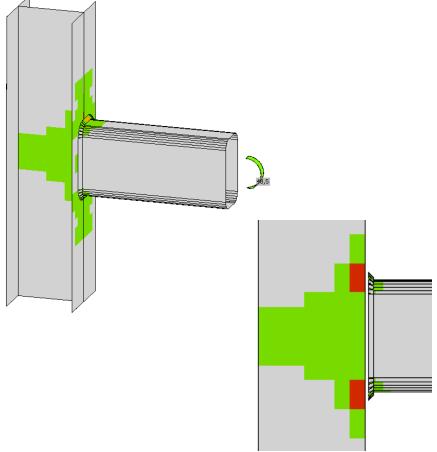
Assessment I

CBFEM

Principles

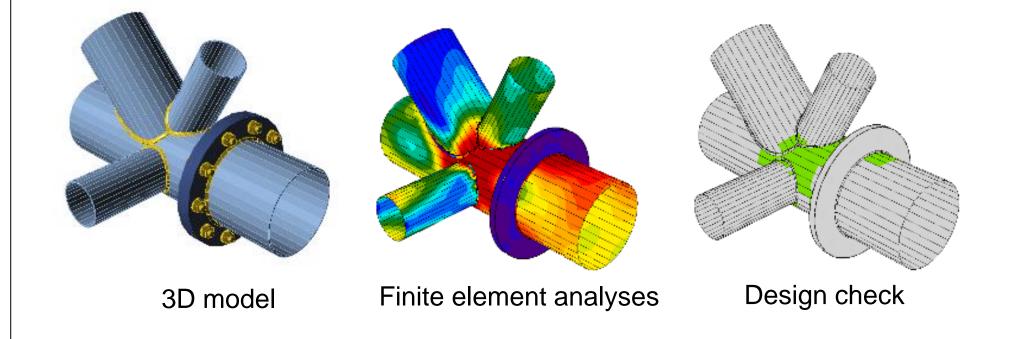
Validation


Verification


Benchmark case

Assessment II

Summary



What is the major reason

of using CBFEM for Hollow section joints?

- The design resistance of generally loaded complex hollow section joints may be by failure mode method only estimated.
- The example of design procedure by CBFEM is shown below.

Introduction Failure mode meth.

General

- Joint parameters
- Component method

Hollow to open

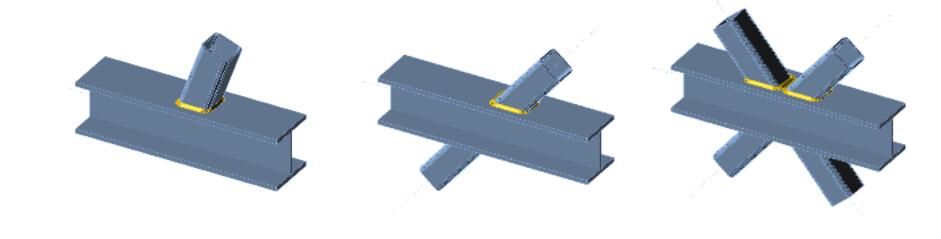
Assessment I

CBFEM

Principles

Validation

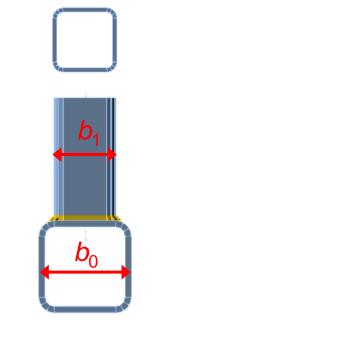
Verification


Benchmark case

- Assessment II
- Summary

Design tips

- The most economical and common way to connect hollow sections to open sections is by direct connection, without the use of cross plates or gussets, which is also the most efficient method for protection and maintenance.
- Connections between hollow and open sections are easy to make because the connectors have only straight end cuts.



- Introduction Failure mode meth. General
- Joint parameters
- Component method
- Hollow to open
- Assessment I
- CBFEM
- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Design tips

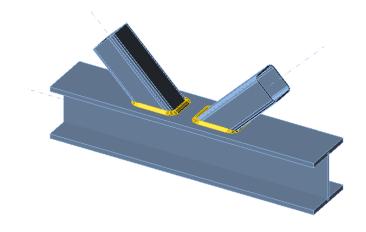
- Tips to optimize design
 - Select relatively stocky chord
 - Select relatively thin brace

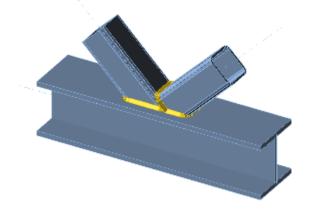
 b_1/b_0 as high as possible

 t_1/t_0 as low as possible

 t_0

- Introduction
- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I


- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary


Design tips

• Tips to optimize joint design

• Consider virtues of <u>gapped</u> K-connections

• Gapped joints are easier and cheaper to fabricate.

 Overlapped joints have higher static and fatigue strength and produce stiffer truss (reduced truss deflections).

- Introduction
- Failure mode meth.
- General
- Joint parameters
- Component method
- Hollow to open
- Assessment I

- Principles
- Validation
- Verification
- Benchmark case
- Assessment II
- Summary

Thank your for attention

URL: <u>steel.fsv.cvut.cz</u>

František Wald, Marta Kuříková, Martin Kočka, Abhishek Ghimire, Luboš Šabatka, Jaromír Kabeláč, Drahoš Kojala

Notes to users of the lecture

- <u>Subject</u> Design of hollow section joints of steel structures.
- o Lecture duration 60 mins.
- <u>Keywords</u> Civil Engineering, Structural design, Steel structure, Trusses, Truss girder, Joint, Hollow section joint, Hollow to open section joint, Component Method, Component based Finite Element Method, Eurocode.
- <u>Aspects to be discussed</u> Curve fitting models of joints, Failure mode models of joints, FE models of joints, Failure modes, Component method principle, Application of analytical modelling
- <u>Further reading</u> relevant documents in references and relevant European design standards, Eurocodes including National Annexes.
- <u>Preparation for tutorial exercise</u> see examples in References.

Sources

Batista P. N., Component based finite element model

of hollow to open section connection, Master theses,

Czech Technical University in Prague, 2017.

- Jaspart J.P., Weynand K., Design of hollow section joints using the component method, *Tubular Structures XV*, 2015, 403-410.
- Lu L.H., de Winkel G.D., Yu Y., Wardenier I., Deformation limit for the ultimate strength of hollow section joints, *Tubular Structures VI*, Balkema, Rotterdam, 1994, 341-347.
- Wald F. et al, *Benchmark cases for advanced design of structural steel connections*, Česká technika ČVUT, 2016.
- Wald, F.; Kočka, M. et al, To the advanced design models of hollow section joints, Stahlbau, Holzbau und Verbundbau, Stuttgart, 2017, 176-181Wardenier, J., Hollow section joints. Delft University Press, 1982, Delft.

Wardenier, J., Hollow section joints. Delft University Press, 1982, Delft.

Wardenier J. at al, Design Guide for Structural Hollow Sections in Mechanical Applications, CIDECT, Köln, 1995.

Wardenier, J., Packer, J.A., Vegte, G.J. van der, Zhao, X.-L., Hollow sections in structural applications, CIDECT, 2nd Edition, Bouwen met Staal, Delft, 2010.

References CIDECT

http://www.cidect.org/design-guides.html

https://www.aisc.org/technical-resources/cidect-design-guides/

- Dutta, D., Wardenier, J. Yeomans, N., Sakae, K. Bucak, Ö., Packer, J.A. 1998. Design guide for fabrication, assembly and erection of hollow section structures. CIDECT Construction with hollow steel sections. TÜV Verlag Köln.
- Kurobane, Y., Packer, J.A., Wardenier, J., Yeomans, N., 2004. Design guide for structural hollow section column connections. CIDECT Construction with hollow steel sections. TÜV Verlag Köln.
- Lu, L.H., de Winkel, G.D., Yu, Y. & Wardenier, J. 1993. Deformation limit for the ultimate strength of hollow section joints. In P. Grundy & A. Holgate & B. Wong (eds), Proc. intern. Symp. on Tubular Structures, Melbourne, 14-16 December 1994. Rotterdam: Balkema.
- Packer, J.A., Wardenier, J., Kurobane, Y., Dutta, D., Yeomans, N. 1995. Design Guide for circular hollow sections (CHS) joints under predominantly static loading. CIDECT Construction with hollow steel sections. TÜV Verlag Köln.

Wardenier, J. 1982. Hollow section joints. Ph.D. Thesis. Delft University Press, The Netherlands.Wardenier, J. 2002. Hollow Sections in Structural Applications. Bouwen met Staal, Zoetermeer, The Netherlands.

CIDECT Materials

Publication

www.cidect.org/en/Publications

• Design tolls

www.cidect.org/en/Software

• Fire design

www.cidect.org/en/Software/tubeFire.php

About CEDEC

Members

Witthenring 30 44229 Develoand Germony

Standards

franklich Wald ab al

ANSI/AISC 360-10, Specification for Structural Steel Buildings, AISC, Chicago, 2010.

IIW XV-1439-13 ISO/FDIS 14346, Static Design Procedure

for Welded Hollow-Section Joints – Recommendations, Brussels, 2012.

- EN1993-1-8:2005, Eurocode 3, Design of steel structures, Part 1-8, Design of joints, CEN, Brussels, 2006.
- prEN1993-1-8:2018, Eurocode 3, Design of steel structures, Part 1-8, Design of joints, CEN, Brussels, 2018.
- EN 10210-1:2006, Hot finished structural hollow sections on non-alloy and fine grain steels, Part 1: Technical delivery conditions, CEN, Brussels, 2006.
- EN 10210-2:2006, Hot finished structural hollow sections on non-alloy and fine grain steels, Part 2: Tolerances dimensions and sectional properties, CEN, Brussels, 2016.
- EN 10219-1:2006, Cold formed structural hollow sections of non-alloy and fine grain steels, Part 1: Technical delivery conditions, Part 2: Tolerances, dimensions and sectional properties, CEN, Brussels, 2006.

