

COST is supported by the EU RTD Framework Programme and ESF provides the COST Office through an EC contract.

Cost **TU0904**

Integrated Fire Engineering and Response

State of the Art Report

March 2011

COST- the acronym for European **CO**operation in the field of **S**cientific and **T**echnical Research- is the oldest and widest European intergovernmental network for cooperation in research. Established by the Ministerial Conference in November 1971, COST is presently used by the scientific communities of 35 European countries to cooperate in common research projects supported by national funds.

The funds provided by COST - less than 1% of the total value of the projects - support the COST cooperation networks, COST Actions, through which, with only around \notin 20 million per year, more than 30.000 European scientists are involved in research having a total value which exceeds \notin 2 billion per year. This is the financial worth of the European added value which COST achieves.

A bottom up approach (the initiative of launching a COST Action comes from the European scientists themselves), à la carte participation (only countries interested in the Action participate), equality of access (participation is open also to the scientific communities of countries not belonging to the European Union) and flexible structure (easy implementation and light management of the research initiatives) are the main characteristics of COST.

As precursor of advanced multidisciplinary research COST has a very important role for the realisation of the European Research Area (ERA) anticipating and complementing the activities of the Framework Programmes, constituting a ridge towards the scientific communities of emerging countries, increasing the mobility of researchers across Europe and fostering the establishment of Networks of Excellence in many key scientific domains such as: Biomedicine and Molecular Biosciences; Food and Agriculture; Forests, their Products and Services; Materials, Physics and Nanosciences; Chemistry and Molecular Sciences and Technologies; Earth System Science and Environmental Management; Information and Communication Technologies; Transport and Urban Development; Individuals, Society, Culture and Health. It covers basic and more applied research and also addresses issues of pre-normative nature or of societal importance.

COST Action TU0904 Integrated Fire Engineering and Response fire.fsv.cvut.cz/ifer

State of the Art Report

Ed. Wald F., Burgess I., De La Quintana J., Vila Real P., Kwasniewski L., Horová K., Jána T. The production of this publication was supported by COST, www.cost.esf.org.

ISBN – 978-80-01-04598-5 Print Pražská technika , Czech Technical University in Prague March 2011 250 copies, 240 pages

CONTENTS

PREFACE	11
"Integrated Fire Engineering and Response"	11
WG1	13
FIRE BEHAVIOUR AND FIRE SAFETY	14
Overview	14
Fire scenarios	14
Design Fires	15
Fire evolution, propagation, suppression (active measures)	16
Compartment energy balance	16
Smoke control	17
Tenability conditions	18
People evacuation	19
Rescue and intervention	19
OBJECTIVES OF FIRE SAFETY	20
Basic Definition of Fire Growth	21
REVIEW OF DESIGN FIRES IN BUILDINGS	23
Fire load survey of commercial premises in Finland	23
Design fires for fire safety engineering	23
Fire load distributions in the program to prevent fatal events in fire	24
Fire load survey and statistical analysis	24
Fire load survey of historic buildings: A case study	24
Determining design fires for design-level and extreme events	25
Medium-scale fire experiments of commercial premises	25
A pilot survey of fire loads in Canadian homes	25
Literature review on design fires	26
Fire loads in office buildings	26
Fire load in residential buildings	26
Fire loads in apartments of block of flats	27
DESIGN FIRES: PERFORMANCE-BASED DESIGN IN FIRE AND STRUCTURES	28
Design Fire Scenarios	28
Design Fires	29
Heat transfer from fire to structure	31
PROCEDURAL METHOD OF APPLICATION OF ENGINEERING METHODS IN GERMANY	32
Introduction	32
i	

Fulfillment of safety targets	32
Structural fire safety design with Eurocodes	33
Annex AA	33
Annex BB	35
Annex CC	36
Realised Projects	36
Summary	37
TRAVELLING FIRES IN LARGE COMPARTMENTS	38
DESIGN FIRES: PROBABILISTIC APPROACH	44
Overview	44
Statistical distribution of fire load	44
Fire loads	44
Design fire	45
Risk of ignition	45
Mathematical models	45
Safety levels	46
SOME LIMITS TO COMPUTATIONAL MODELLING OF ENCLOSURE FIRE DYNAMICS	47
The Dalmarnock Fire Tests	47
Round-Robin Study	49
Comparison and analysis of the results	49
Discussion and Conclusions	50
NOTE ON DESIGN FIRES IN STRUCTURES, COMPARMENTS AND TUNNELS	52
Heat release rate in EN 1991-1-2	52
Heat release rate and fuel packages	52
Heat release rate in road tunnel fires	53
SMOKE CONTROL	54
Smoke hazard	54
Smoke management system: objective and principles	54
Fire plumes	55
Design tools	55
Zone models	55
Computational fluid dynamics (CFD) models	56
TENABILITY CONDITIONS	57
Toxic species in fire gas effluents	57
Assessment of toxic hazards.	57

Toxic Gases in simulated aircraft interior fires using FTIR analysis	57
FTIR Investigations of Toxic Gases in Air Starved Enclosed Fires	58
Toxic Gas Measurements Using FTIR for Combustion of COH Materials in Air Starved Enclosed Fires	58
Thermal behaviour and toxic emissions of flame retarded timber in Fire enclosure tests	58
Thermal behaviour and toxic emissions of various timbers in Cone Calorimeter tests	59
Thermal behaviour and toxic emissions of flame retarded timbers in Cone Calorimeter tests	59
THE HEAT TRANSFER ALONG A STEEL BAR	60
Statement of the problem	60
The mesh	60
The protection	60
Boundary conditions	61
In-depth results	61
Conclusions	69
FIRE RESEARCH AT UNIVERSITAT POLITÈCNICA DE CATALUNYA - EPSEB	70
Passive protection under fire	70
Building-façade geometry and its impact on fire propagation	70
RAILCEN project: Evolution of fire in a railway vehicle	71
FIRE RESEARCH AT THE TECHNICAL UNIVERSITY OF OSTRAVA	72
Tools on risk assessment methods for fire safety engineering	72
Verification of fire safety in road tunnels	72
Appendix	74
OVERVIEW OF THE PRINCIPLES OF HEAT TRANSFER	74
Heat	74
Specific Heat	74
Temperature	75
Internal Energy	75
First Law of Thermodynamics	75
System Work	76
Heat Conduction	76
Heat Convection	77
Heat Radiation	78
Heat Transfer by Vaporization	78
Heat of Vaporization	78
WG2	79
GLOBAL MODELLING OF FIRE-AFFECTED STRUCTURES	80

Modelling the Cardington Tests	80
Modelling the Collapse of Fire-affected Structures	80
Development of Material Models	81
FULLY COUPLED TEMPERATURE-DISPLACEMENT ANALYSES OF STEEL STRUCTURES UNDER FIRE	82
Motivation	82
Methodology	82
Application	82
Further developments	83
METHODOLOGY FOR THE ROBUSTNESS ASSESSMENT OF STRUCTURES SUBJECTED TO FIRE FOLLOWING EARTHQUAKE THROUGH A PERFORMANCE-BASED APPROACH.	84
Motivation	84
Methodology	84
Application	84
Further developments	85
FIRE SAFETY ENGINEERING FOR BUILDINGS AND OPEN CAR PARKS.	87
Research significance	87
Case study: Office Building	87
Results	87
Case study: Open Car Park	88
Application to a real case	88
EXPERIMENTAL FIRE TESTS ON CONCRETE SLABS REINFORCED WITH FRP BARS	90
Research significance	90
Experimental program	90
Experimental results	91
Further developments	91
FIRE ANALYSES OF COMPOSITE STEEL-CONCRETE FRAMES	93
Research significance	93
Parametric Analysis	93
Results Discussion	94
Future developments	95
FIRE TESTS AND INVESTIGATION ON BUILDING MATERIALS AND STRUCTURES	96
Investigation of material properties at elevated temperature - Heat effect by natural building materials as s and adobe	stones 96
BEHAVIOUR OF R/C SECTIONS, ELEMENTS AND STRUCTURES EXPOSED TO FIRE	98
FIRE AFTER EARTHQUAKE	100

FINITE ELEMENT MODELLING OF LAP SHEAR RIVETED CONNECTIONS IN FIRE		
COMPUTER SIMULATIONS OF STRUCTURES IN FIRE - VERIFICATION AND VALIDATION		
Verification	103	
Validation	103	
Validation and calibration	104	
BEHAVIOR OF RC ELEMENTS IN CASE OF FIRE	106	
Behaviour of RC beams under different fire scenarios	106	
Coupled Thermal - Stress Analysis	106	
Axial Restraint Effects on Fire Resistance of RC Beams	107	
FIRE FOLLOWING EARTHQUAKE	108	
Post-earthquake fire resistance of steel and composite steel-concrete frames	108	
BEHAVIOUR OF ALUMINIUM ALLOY STRUCTURES UNDER FIRE	110	
Research significance	110	
Mechanical features of aluminium alloys at high temperatures	110	
Proposal of stress-strain relationships for aluminium alloys at high temperatures	110	
STEEL COLUMNS IN FIRE	113	
Behaviour of steel columns in fire	113	
Simplified analytical procedures	113	
Experimental studies	114	
Numerical analyses	115	
LARGE SCALE FIRE TESTS	118	
Sprinklers and unprotected steel test	118	
Office compartment demonstration test	118	
Open car parks test	118	
Cardington laboratory	119	
Cardington steel framed building	119	
Cardington concrete framed building	120	
Cardington timber framed building	120	
Steel frame connections temperatures and forces	121	
Composite floor 12 x 18 m to collapse	121	
Composite unprotected floor 8.735 x 6.6 m	121	
Composite unprotected floor 6.6 x 8.4 m	122	
Composite floor with cellular beams 15 x 9 m	122	
STEEL BEAM-COLUMN UNDER THERMAL GRADIENT	123	

STEEL BEAM-COLUMN UNDER THERMAL GRA

	Combined axial-bending capacity of steel double-T cross-sections subjected to non-uniform temperature distri	bution 123
	Determination of the K1 increasing factors of the stress-strain relationship for steel double-T cross sections subjected to non-uniform temperature distribution	124
A	SCIENTIFIC APPROACH TO BEHAVIOUR OF INTUMESCENT PAINTS	125
F	RE BEHAVIOUR OF BOLTED CONNECTIONS	127
	Behaviour of high strength bolts in fire	127
	Behaviour of slim-floor-beams in fire	127
	Fire behaviour of connections consisting of high strength bolts	128
	Fire performance of external semi rigid composite joints	128
P	REDICTION OF TEMPERATURES IN STEEL CONNECTIONS	129
	Methods for predicting connection temperatures	129
	Temperatures of header plate connections during fire test on steel framed building at Mittal Steel Ostrava	129
	Temperatures of connections partially encased in the concrete slab during the Mokrsko fire test	130
	Temperatures in unprotected joints between steel beams and CFT columns	130
N	ONLINEAR FINITE ELEMENT ANALYSIS OF RC STRUCTURES SUBJECTED TO FIRE	131
	Residual concrete strength after fire action	132
	Fire after earthquake	132
G	LOBAL MODELLING OF THE BEHAVIOUR OF FRAMED BUILDINGS IN FIRE	134
	Vulcan software	134
	Static/Dynamic analysis for structural robustness modelling in fire	134
	Modelling localisation of tensile cracking of concrete slabs in fire	135
	Component-based modelling for connection robustness in fire	135
E	XPERIMENTAL STUDIES OF STEEL CONNECTIONS IN FIRE	138
	Moment-rotation-temperature characteristics of endplate connections	138
	Testing of connections under combined moment, shear and tying forces	138
	Robustness in fire of connections to composite columns	139
т	HERMAL AND STRUCTURAL BEHAVIOUR OF CONCRETE SLABS AT HIGH TEMPERATURES	140
P	ERFORMANCE OF CELLULAR COMPOSITE FLOOR BEAMS UNDER FIRE CONDITIONS	141
F	RE RESISTANCE OF COMPOSITE PARTIALLY FIRE PROTECTED FLOOR	142
	Analytical unrestrained slab panel model	142
	Analytical zone model	142
	Advanced modelling of membrane action	143
	Design tool for membrane action in fire	143

FIRE RESEARCH AT THE LABORATORY OF STRUCTURAL ANALYSIS AND DESIGN, DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF THESSALY	145
Numerical simulation of the behavior of steel and composite structures under fire conditions after earthquake events	145
Numerical analysis of the behaviour of structural elements at elevated temperatures	145
Definition of the requirements for the combined action of fire after earthquake	145
Fire design and analysis of model structures for the combined scenarios of fire after earthquake	145
Behaviour of composite slabs in elevated temperatures	146
FIRE RESEARCH AT THE UNIVERSITY OF COIMBRA	147
Behaviour of beam-to-column steel joints under natural fire	147
Fire resistance of steel and composite steel-concrete columns in buildings	148
Robustness of open car parks under localised fire	149
Composite joints for improved fire robustness	150
RESEARCH IN THE FIELD OF STRUCTURAL FIRE SAFETY ENGINEERING AT ETH ZURICH	151
Stability behavior of steel structures in fire	151
Fire safety of multi-storey timber buildings	152
STRUCTURAL FIRE ENGINEERING RESEARCH AT THE UNIVERSITY OF MANCHESTER	156
Main areas of expertise:	156
Post-flashover fire dynamics	156
Heat transfer analysis	156
Thermal and mechanical properties of construction materials at elevated temperatures	157
Behaviour of steel, concrete and composite structures in fire	158
Tensile membrane action	160
Catenary action	160
Behaviour of joints in fire	161
Concrete filled tubular columns	162
Behaviour of thin-walled steel structures	162
Dissemination and education	163
FIRE RESEARCH AND DESIGN AT THE "POLITEHNICA" UNIVERSITY OF TIMISOARA, ROMANIA	164
Fire after earthquake	164
Numerical modelling of membrane action of composite slabs in fire situation	165
FIRE RESEARCH IN POLAND	166
General division	166
State Institutions	166
Universities and Academia	166
Research Units	167

Others	167
RECENT FIRE SAFETY RESEARCH AT THE CHAIR FOR METAL STRUCTURES, TECHNISCHE UNIVERSITÄT MÜNCHEN	169
Utilisation of Membrane action for Fire Design of Composite-Beam-Slab-Systems	169
Intumescent Coating Systems on Steel Columns in Interaction with Industry Claddings	169
Patch Loading under Fire Conditions	169
PRACTICAL ACTIVITY OF FIRE ENGINEERING AROUND PROBLEMATIC OF EUROCODES IN SLOVAK REPUBLIC.	170
Official standpoint Ministry of interior Slovak Republic for Fire resistance of building structures in the Slovak republic under Eurocodes:	170
Results:	171
Next subsidiary results:	171
FIRE RESEARCH AT THE UNIVERSITY OF COIMBRA	173
Behaviour of beam-to-column steel joints under natural fire	173
Fire resistance of steel and composite steel-concrete columns in buildings	174
Robustness of open car parks under localised fire	175
Composite joints for improved fire robustness	176
WG3	177
WG3 INTRODUCTION	178
1. Building Regulations	178
2. Design Codes	178
3. Approvals process	179
4. Insurance companies	180
5. Qualification requirements for designers	180
6. Precedence of performance-based fire engineering projects	180
7. Passive fire protection	181
Responses:	181
BUILDING REGULATIONS	182
Question 1.1: Prescriptive or performance-based	182
Answers:	182
Question 1.2: Relevant Building Regulations	184
Answers:	184
Question 1.3: Additional guidance	187
Answers:	187
Question 1. 4: Different regulations for certain types of buildings	189
Answers:	189
DESIGN CODES	193

DESIGN CODES

COST Action TU0904 Integrated Fire Engineering and Response

	Question 2.1a:	Relevant national or international/European standards - Means of escape	193
	Answers:		193
	Question 2.1b:	Relevant national or international/European standards - Smoke management	195
	Answers:		195
	Question 2.1c:	Relevant national or international/European standards - Fire resistance of the construction	197
	Answers:		197
	Question 2.1d:	Relevant national or international/European standards - Fire fighting	199
	Answers:		199
	Question 2.1e:)	Relevant national or international/European standards - Fire safety systems (alarm, suppres. 201	sion,
	Answers:		201
	Question 2.2:	Use of Eurocodes or other international fire standards	205
	Answers:		205
	Question 2.3:	Translations of the fire parts of Eurocodes	206
	Answers:		206
	Question 2.4: N	ational annexes	209
	Answers:		209
A	APPROVALS PROCESS 210		
	Question 3.1:	Route to get a project approved	210
	Answers:		210
	Question 3.2:	Fire brigade in the process	212
	Answers:		212
	Question 3.3:	Third party review	214
	Answers:		214
	Question 3.4:	Alternative route of approvals for performance-based design	215
	Answers:		215
	Question 3.5:	Time frame for the approvals process	217
	Answers:		217
	Question 3.6:	Level of information needed	219
	Answers:		219
	Question 3.7:	Specific facilitators	220
	Answers:		220
IP		PANIES	221
	Question 4.1:	Involvement	221
	Answers:		221
	Question 4.2:	Discussion with insurance companies	223
	Answers:		223

QUALIFICATION I	REQUIREMENTS FOR DESIGNERS	225
Question 5.1:	Certificates/licenses requirements	225
Answers:		225
Question 5.2:	Specific design licenses	227
Answers:		227
Question 5.3:	Licence holder	228
Answers:		228
Question 5.4 -	Specific insurance	229
Answers:		229
PRECEDENCE OF	PERFORMANCE-BASED FIRE ENGINEERING PROJECTS	230
Question 6.1:	Project details	230
Answers:		230
Question 6.2:	Performance-based	232
Answers:		232
Question 6.3:	Used techniques	233
Answers:		233
Question 6.4:	Approvals route	235
Answers:		235
PASSIVE FIRE PRO	OTECTION	236
Question 7.1:	Product approvals	236
Answers:		236
INDEX OF AUTHO	DRS	238

PREFACE

"Integrated Fire Engineering and Response"

When the COST Action TU0904 was proposed, its "big idea" lay in including the word Integrated in its title.

Current practice in the European Union is that Fire safety is nationally managed, and the ways in which this happens are determined by the specific experiences of each country. A good example of this influence of history is the United Kingdom, for which a single event, the Great Fire of London in 1666, radically changed the way houses were constructed, with the avoidance of fire spread being the most important objective. Fire regulations in the UK (particularly in England) still reflect the determination of legislators to avoid similar events. While the political motivations for this approach are obvious, and local circumstances vary between countries, it can easily lead to similar processes having to be re-researched and re-invented country by country. In the context of the European Union and the introduction of common standards in areas related to fire

Figure 1: The Great Fire of London, 1666. <u>A contemporary engraving</u>

safety, it seems obvious that in such an important area the sharing of experience and research should be facilitated, and hence the need for networks in the COST model.

However, the need for integration has a further dimension. Fire engineering researchers tend to specialise in areas such as fire dynamics, structural fire engineering, active/passive fire protection, environmental protection or human response. Since the background sciences of these disciplines are different there is little interaction between them. Practitioners, including fire engineers, building/fire control authorities, and fire-fighters tend to consider fire safety as a whole, but lack in-depth awareness of recent advances in research and are outside the academic research networks. Through encouraging the exchange of information on different aspects of fire engineering and response between researchers in different countries, the network intends to create an awareness of the current state of the art, and to avoid repetition of research. The non-research community will benefit from exposure to advanced research findings, discussion with researchers, and the sharing of best practice. Their input will make researchers aware of real-world constraints, and where new research and standards are needed.

The Action divides its membership *loosely* into three themed Working Groups, although clearly its overall mission of promoting integration means that these groups must interact on many of the key activities. The Working Groups are:

<u>WG1. Fire Behaviour and Life Safety</u> focuses on the behaviour and effects of fire in buildings, combining this research-based knowledge with the most effective means of protecting human life against the occurrence of fire in the built environment. This includes active measures in fire-fighting with the effects of building form on the inherent risk to inhabitants.

<u>WG2. Structural safety</u> covers the response of different building types to fires and the rapidly developing research field of structural fire engineering, including new materials and technologies and passive protection measures. Crucial problems of structural fire engineering concern change of use of buildings and the current imperatives of sustainability, energy saving and protection of the environment after fire.

<u>WG3.</u> Integrated Design brings together design, practice and research across the disciplines of fire in the built environment. In structural design this includes integration of fire resistance with all the other functional requirements of a building, from concept onwards, rather than simply adding fire protection

after all other processes are complete. Active input from practitioners, regulators and fire-fighters through this group is vital to the success of the Action.

The Action started in July 2010, and now has 22 nations of the EU as participants. Its first "deliverable", which attempts to bring together the current state of research, mainly in the participating countries but set into the context of knowledge world-wide, is this State of the Art Report. For this document the material is grouped according to its relationship to the three Working Groups, and has been collated by their chairmen from theiur membership. In the case of WG1 and WG2, which are active academic research fields, the articles comprise brief résumés of key research topics, together with the current state of progress, and themes, of the research centres of the participating nations. For WG3 the baseline is rather different, being based on current practice and the regulatory régimes within which fire engineering is carried out. Hence an attempt has been made, via a detailed questionnaire sent to individual country representatives, to bring together relevant information on these issues. It is clear that further contextual issues will become apparent within the next 3 years of the Action, and both the questionnaire and its responses can be updated as the network reveals these issues.

lan Burgess (vice-Chair)

<u>1 April 2011</u>