

Fire Modelling

Joakim Sandstrom Lulea, 13th–15th of March 2014

Smoke management depends strongly on geometry

• Smoke management depends strongly on geometry \rightarrow hard to standarise

- Smoke management depends strongly on geometry \rightarrow hard to standarise
 - \rightarrow India to Standartse
 - \rightarrow Prescriptive design often impossible

- Smoke management depends strongly on geometry
 - \rightarrow hard to standarise
 - \rightarrow Prescriptive design often impossible
- Engineering solutions needed!

- Smoke management depends strongly on geometry
 - \rightarrow hard to standarise
 - \rightarrow Prescriptive design often impossible
- Engineering solutions needed!
- This is where Fire Modelling comes into play

• What kind of Fire Model?

- What kind of Fire Model?
 - O-D Empirical Correlations (e.g. Heskestad's Plume Model)

- What kind of Fire Model?
 - O-D Empirical Correlations (e.g. Heskestad's Plume Model)
 - 1-D Zone Model

- What kind of Fire Model?
 - O-D Empirical Correlations (e.g. Heskestad's Plume Model)
 - 1-D Zone Model
 - 3-D Computational Fluid Dynamics (CFD)

- What kind of Fire Model?
 - O-D Empirical Correlations (e.g. Heskestad's Plume Model)
 - 1-D Zone Model
 - 3-D Computational Fluid Dynamics (CFD)
- What fire?

- What kind of Fire Model?
 - O-D Empirical Correlations (e.g. Heskestad's Plume Model)
 - 1-D Zone Model
 - 3-D Computational Fluid Dynamics (CFD)
- What fire?
 - \rightarrow Design fire based on use, geometry and fire load

That being said....

That being said....

The choice of Fire Model is not necessarily exclusive. You might need to use CFD and still use correlations.

That being said....

The choice of Fire Model is not necessarily exclusive. You might need to use CFD and still use correlations.

Design fire need engineering judgement! \rightarrow There is no single solution..

CIBSE Guide E

• Most accepted growth model: t^2 -fire

• Most accepted growth model: t^2 -fire $\dot{Q} = \alpha t^2$

• Most accepted growth model: t^2 -fire $\dot{Q} = \alpha t^2$

• α depends on type of fuel

- Most accepted growth model: t^2 -fire $\dot{Q} = \alpha t^2$
- α depends on type of fuel
 - \rightarrow Categorised according to use: office, storage, dwellings etc.

- Most accepted growth model: t^2 -fire $\dot{O} = \alpha t^2$
- α depends on type of fuel
 - \rightarrow Categorised according to use: office, storage, dwellings etc.
- Maximum \dot{Q} depends on amount of fuel, or ventilation configuration

- Most accepted growth model: t^2 -fire $\dot{O} = \alpha t^2$
- α depends on type of fuel
 - \rightarrow Categorised according to use: office, storage, dwellings etc.
- Maximum *Q* depends on amount of fuel, or ventilation configuration
 - \rightarrow Engineering judgement..

Karlsson – Enclosure Fire Dynamics

Table 10.1 Characteristic growth time for variousclasses of fire

Fire class	Characteristic growth time, t_g / s		Constant <i>a</i> / kW·s ⁻²
Ultra-fast	75	KA	0.1876
Fast	150	230	0.0469
Medium	300	X	0.0117
Slow	600	0	0.0029

Table 10.2 Growth rates for growing fires

Building area providing fuel	Growth rate	
Dwelling	Medium	
Office	Medium	
Shop	Fast	
Warehouse	Ultrafast†	
Hotel bedroom	Medium	
Hotel reception	Medium	
Assembly hall seating	Medium-fast	
Picture gallery	Slow	
Display area	Slow-medium	

† depends on fire load

CIBSE Guide E

The maximum Heat Release Rate (\dot{Q}_{max}) and fire duration have to be estimated according to the following criteria:

The maximum Heat Release Rate (\dot{Q}_{max}) and fire duration have to be estimated according to the following criteria:

• Ventilation condition (if flashover occurred)

The maximum Heat Release Rate (\dot{Q}_{max}) and fire duration have to be estimated according to the following criteria:

- Ventilation condition (if flashover occurred)
- Total fuel load and Fuel density (if flashover hasn't occurred)

The maximum Heat Release Rate (\dot{Q}_{max}) and fire duration have to be estimated according to the following criteria:

- Ventilation condition (if flashover occurred)
- Total fuel load and Fuel density (if flashover hasn't occurred)
- Engineering judgement

The maximum Heat Release Rate (\dot{Q}_{max}) and fire duration have to be estimated according to the following criteria:

- Ventilation condition (if flashover occurred)
- Total fuel load and Fuel density (if flashover hasn't occurred)
- Engineering judgement

Indications can be found in CIBSE Guide E, SFPE Handbook or NFPA.

Once we defined our Design Fire, Q(t), we can get estimations of important characteristics:

• Air entrainment \rightarrow Volume of smoke

- Air entrainment \rightarrow Volume of smoke
- Plume temperature

- Air entrainment \rightarrow Volume of smoke
- Plume temperature
- Plume velocity

- Air entrainment $\dot{m}_{ent} = E\left(\frac{g\rho_{\infty}^2}{T_{\infty}c_p}\right)\dot{Q}_c^{1/3}(z-z_0)^{5/3}\cdot\left[1+\frac{G\dot{Q}_c^{2/3}}{\left(g^{1/2}c_p\rho_{\infty}T_{\infty}\right)^{2/3}(z-z_0)^{5/3}}\right]$ \rightarrow Volume of smoke
- Plume temperature
- Plume velocity

- Air entrainment $\dot{m}_{ent} = E\left(\frac{g\rho_{\infty}^2}{T_{\infty}c_p}\right)\dot{Q}_c^{1/3}(z-z_0)^{5/3}\cdot\left[1+\frac{G\dot{Q}_c^{2/3}}{\left(g^{1/2}c_p\rho_{\infty}T_{\infty}\right)^{2/3}(z-z_0)^{5/3}}\right]$ \rightarrow Volume of smoke
- Plume temperature $T_{\text{smoke}} = T_{\infty} + \frac{\dot{Q}_c}{\dot{m}_{\text{ent}}c_p}$
- Plume velocity

- Air entrainment $\dot{m}_{ent} = E\left(\frac{g\rho_{\infty}^2}{T_{\infty}c_p}\right)\dot{Q}_c^{1/3}(z-z_0)^{5/3}\cdot\left[1+\frac{G\dot{Q}_c^{2/3}}{\left(g^{1/2}c_p\rho_{\infty}T_{\infty}\right)^{2/3}(z-z_0)^{5/3}}\right]$ \rightarrow Volume of smoke
- Plume temperature $T_{\text{smoke}} = T_{\infty} + \frac{\dot{Q}_c}{\dot{m}_{\text{ent}}c_p}$
- Plume velocity $u_{smoke} = 3.4 \left(\frac{g}{\rho_{\infty} T_{\infty} c_p}\right)^{1/3} \dot{Q}_c^{1/3} (z z_0)^{-1/3}$

• For confined spaces, free plume correlations yield poor results.

- For confined spaces, free plume correlations yield poor results.
- Heat transfer calculations from a fire to the structure.

- For confined spaces, free plume correlations yield poor results.
- Heat transfer calculations from a fire to the structure.
- \rightarrow Requires more sophisticated models.

- For confined spaces, free plume correlations yield poor results.
- Heat transfer calculations from a fire to the structure.
- \rightarrow Requires more sophisticated models.
- \rightarrow If you need spatial resolution (e.g. location of exhaust outlets, gas temperatures for heat transfer calculations), use field models (CFD).

