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Introduction
Background of the Study
The study presented here has been performed as part of a European project called
COMPFIRE.
During the project fire tests were conducted on:
• Connection Components

• Isolated Joints

• Sub-frames

• Full scale buildings

Source: University of Coimbra
Source: Sheffield University

Source: University of Coimbra

Source: Czech Technical University
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Introduction
Hand caclulation model
• A proposed method for hand calculation by Yin and Wang* (2005)

• 4 point concentrated loading of the beam (as in the sub-frame tests)

• The supports provide flexible rotational and axial restraints to the beam

* Yin, Y. Z., Wang, Y. C.,: “Analysis of catenary action in steel beams using a simplified hand calculation method, 
Part 1: theory and validation for uniform temperature distribution”, Journal of Constructional Steel Research, Vol. 
61: pp. 183 – 211, 2005
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State of the art
Steel Structures in Fire
• Loss of Strength and Stiffness

• Thermal expansions

• Excessive deformations

Engineering approach (design codes)
• All Structural components i.e. connections, beams and columns are designed as 

isolated components in Fire

• For a beam the flexural resistance determines the design resistance in the absence
of any interaction with surrounding structure
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State of the art
Material properties degradation

• Yield Strength

• Modulus of Elasticity

y, y, yf k f 

E,E k E 
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State of the art
Conventional design

• Failure Criterion

• Moment resistance

fi,d Ed,fiM M

pl y
fi,d y,

M,fi

W f
M k 


Runaway deflection
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Restrained Beam

State of the art
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State of the art

Equilibrium at elevated temperature

• Isolated beam

• Restrained Beam

Ed,fi fi,Rd,tM M 0 

Ed,fi fi,Rd,t axialM M F 0   
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Benchmarking of FE-Models
FE-Model of Sub-frame
• Single beam supported by two CFT 

columns

• Software used is ABAQUS

• 3D reduced integration Solid elements 
C3D8R

• Symmetry boundary condition at beam
midspan

Source: University of Coimbra 10

Benchmarking of FE-Models
Material model
From EN 1993 part 1-2

• Yield strength

• Modulus of Elasticity

Reduction factors provided in EN 
1993-1-2

y, y, yf k f 

E,E k E 
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Benchmarking of FE-Models
Simulation Steps

• Pretensioning of the bolts
– Displacement adjustment
– To initialize contact

• Loading of the beam
– Pressure load
– Area same as loading plate

• Application of heat
– Predefined field
– Magnitude according to measurments
– Time vs. Temperature relation
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Benchmarking of FE-Models
Artificial damping
• Matrial softening often causes convergence problems

• Artificial damping through ’Dissipated energy fraction’

• An optimum value for the ’Dissipated energy fraction’ is required to avoid over 
damping

• Ratio between ’artificial strain energy’ and ’total strain energy’ is kept below 5 %

• The results are therefore reliable since there is no artificial increase in the total 
strain evergy of the system

• The alternative is to use Explicite analysis in ABAQUS
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Benchmarking of FE-Models
Results:

14

14

Hand Calculation Method
Equilibrium equation

T m t T R PF ( ) M M M 0     
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Hand Calculation Method
Deflection profile at elevated temperature

Where

• For Uniform temperature

• For temperature gradient

where

 flexible f zero f fixedz 1 c z c z    

R
f

Kc
EI L




 m f zero f fixedz z 1 c z c z     

m tz z z 

 2
t

Tz x Lx
2h


  
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Hand Calculation Method
Deflection profile at elevated temperature
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Hand Calculation Method
Axial force calculation

Where
Effective axial stiffness

Net axial deformation

m
T A m A

LF K K
L

   

AK

m tL L L   

1 22L

0

dzL 1 dx L
dx

       
   

 TL TL  

Thermal expansion

Contraction

Measure of the level
of axial restraint at 

the support

Axial deformation 
depending on 

deflection profile and 
thermal expansion 
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Hand Calculation Method
Variation of Axial force with temperature

• Elastic stage

• Non-linear stage

• Catenary stage

Yield point

Limiting temperature
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Comparison between HCM and FEM
Test Models

Sub-frame setup Column Beam Connection Beam span [m]

Setup 1 SHS 250x8 UB 178x102 x19 UK SHS 180x42.7 2

Setup 2 SHS 250x10 IPE300 U200x90x10 5

Setup 3 SHS 250x10 IPE300 U200x90x8 5

Setup 4 SHS 250x10 IPE300 U200x90x12 5
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Comparison between HCM and FEM
Results: Uniform temperature
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Comparison between HCM and FEM
Results: Temperature gradient
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Comparison between HCM and FEM
Results
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Parametric Study
Different boundary conditions
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Parametric Study
Different boundary conditions
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Conclusions
– Catenary action in restrained beam provides additional resistance approx. 

100°C beyond the conventional limiting temperature. 

– Very high midspan deflections approx. 500 mm could be observed in the 
restrained beam but still be below the limit state.

– The FE-models accurately depict the axial stiffness and the maximum 
compression force measured in the tests, about 10% maximum difference.

– Accuracy of the maximum tensile force is slightly lower in the FE- models due
to interaction with bending moment, about 25% maximum difference.

– Smaller midspan deflection in FE-Models due to slightly stiffer connections and 
stiffer behaviour of the FE-model in general.
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