

Introduction Question unive

universidade de aveiro

□ Prescriptive rules or performance-based approach?

Some background before to try to answer to this question.

Introduction Two type of regulations or standards

- □ Each country has its own regulations for fire safety of buildings where the requirements for fire resistance are given
- □ Standards for checking the structural fire resistance of the buildings in Europe the structural EUROCODES

Introduction Fire Resistance

Classification criteria

R – Load bearing criterion; **E** – Integrity criterion; **I** – Insulation criterion

Load bearing only: mechanical resistance (criterion R)

Load bearing and separating: criteria R, E and when requested, I

universidade de aveiro

Ε

L

Introduction -Fire Resistance Criteria R, E and I - UK Approved document B

Fire resistance *

B3.ii The fire resistance of an element of construction is a measure of its ability to withstand the effects of fire in one or more ways, as follows:

- a. resistance to collapse, i.e. the ability to maintain loadbearing capacity (which applies to loadbearing elements only);
- b. resistance to fire penetration, i.e. an ability to maintain the integrity of the element;
- resistance to the transfer of excessive heat, i.e. an ability to provide insulation from high temperatures.

* In terms of time Examples: R90; REI120

Introduction Fire Resistance – Criteria R, E and I

Standard fire curve

Fire resistance is the time since the begining of the standard fire curve ISO 834 until the moment that the element doesn't fulfill the functions for that it has been designed (Load bearing and/or separating functions)

 $T = 345 \log_{10}(8t+1) + 20$

Introduction Regulations for fire safety of buildings

□ Normally the risk factors are:

- Height of the last occupied storey in the building (h) over the reference plane
- Number of storeys below the reference plane (n)
- Total gross floor area
- Number of occupants (effective)

Introduction. Example Regulations for fire safety – UK Approved document B

could accould account a	Table A2 Minimum periods of fire resistance						
SION	Purpose group of building	Minimum pe	riods (minutes)	for elements	of structure in a):	
The Building Regulations 2000		Basement sto	orey (\$) including floor over	Ground or u	pper storey		
Fire safety	_	Depth (m) of a lowest b	asement		of top floor above separated part of		
		More than 10	Not more than 10	Not more than 5	Not more than 18	Not more than 30	
	1. Residential (domestic):			20	1		
APPROVED DOCUMENT	a. Flats and maisonettes	90	60	30*	60**†	90**	
B1 Means of warning and escape	b. and c. Dwellinghouses	Not relevant	30*	30*	60@	Not relevant	
B2 Internal fire spread (linings)	2. Residential:	101	-				
B3 Internal fire spread (structure) B4 External fire spread	a. Institutional œ	90	60	30*	60	90	
B5 Access and facilities for the fire service	b. Other residential	90	60	30*	60	90	
•	3. Office:						
	 Not sprinklered 	90	60	30*	60	90	
SION	- Sprinklered (2)	60	60	30*	30*	60	
ONLINE VERSION	4. Shop and commercial:						
NUME	 Not sprinklered 	90	60	60	60	90	
ON-	- Sprinklered (2)	60	60	30*	60	60	
•	 Assembly and recreation: 						
Press star	 Not sprinklered 	90	60	60	60	90	

universidade de aveiro

Introduction. Example Regulations for fire safety – UK Approved document B

INTERNAL FIRE SPREAD (STRUCTURE)

B3

The Requirement

This Approved Document deals with the following Requirement from Part B of Schedule 1 to the Building Regulations 2000.

Internal fire spread (structure)

B3. (1) The building shall be designed and constructed so that, in the event of fire, its stability will be maintained for a reasonable period.

(2) A wall common to two or more buildings shall be designed and constructed so that it adequately resists the spread of fire between those buildings. For the purposes of this sub-paragraph a house in a terrace and a semi-detached house are each to be treated as a separate building.

(3) To inhibit the spread of fire within the building, it shall be sub-divided with fire-resisting construction to an extent appropriate to the size and intended use of the building.

(4) The building shall be designed and constructed so that the unseen spread of fire and smoke within concealed spaces in its structure and fabric is inhibited. Requirement B3(3) does not apply to material alterations to any prison provided under Section 33 of the Prisons Act 1952.

Introduction. Example Portuguese regulation for fire safety of buildings

□ Required fire resistance

- The load-bearing or/and separating function should be maintained during the complete duration of the fire including the decay, or alternatively during the required time of standard fire exposure given in the table below:

Standard fire resistance of structural members in buildings

Classification according to the occupancy		Risk ca	tegories		Function of the structural member
enassification according to the occupancy of	1.°	2.2	J.°	4.°	r diction of the structural memoer
I, III, IV, V, VI ,VII ,VIII ,IX ,X	R30	R60	R90	R120	Only load bearing
	REI30	REI60	REI90	REI120	Load bearing and separating
II, XI and XII	R60	R90	R120	R180	Only load bearing
	REI60	REI90	REI120	REI180	Load bearing and separating

Type I «Dwelling»: Type II «Car parks»; Type III «Administrative»; Type IV «Schools»; Type V «Hospitals»; Type VI «Theatres/cinemas and public meetings»; Type VII «Hotels and restaurants»; Type VIII «Shopping and transport centres»; Type IX «Sports and leisure»; Type X «Museums and art galleries»; Type XI «Libraries and archives»; Type XII «Industrial, workshops and storage»

Introduction Codes for fire design in Europe: Structural Eurocodes

Eurocodes

EN 1990	Eurocode:	Basis of Structural Design
EN 1991	Eurocode 1:	Actions on structures
EN 1992	Eurocode 2:	Design of concrete structures
EN 1993	Eurocode 3:	Design of steel structures
EN 1994	Eurocode 4:	Design of composite steel and concrete structures
EN 1995	Eurocode 5:	Design of timber structures
EN 1996	Eurocode 6:	Design of masonry structures
EN 1997	Eurocode 7:	Geotechnical design
EN 1998	Eurocode 8:	Design of structures for earthquake resistance
EN 1999	Eurocode 9:	Design of aluminium structures

Fire design

Parts 1-2

Except EN 1990, EN 1997 and EN 1998, all the Eurocodes have Part 1-2 for fire design

Introduction

Prescriptive or performance-based according the Eurocodes - 1

Introduction Prescriptive or performance-based according the Eurocodes - 2 Design Procedures Prescriptive Rules (Thermal Actions given by Nominal Fire) Tabulated data Simple calculation models or advanced calculation models or

□ Prescriptive rules or performance-based approach?

Depends on the type of structure, its importance for the society, its dimensions, etc.

Next it will be shown some examples where Prescriptive approach and performance-based approached has been used.

Introduction Presciptive approach was used

Fire Design of Structures Four steps

- 1. Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- **3.** Calculation of temperature evolution within the structural members All the Eurocodes
- 4. Calculation of the mechanical behaviour of the structure exposed to fire All the Eurocodes

Eurocode 1: Actions on Structures

Eurocode 1: Actions on Structures

h_{net,d}

Thermal actions

Heat transfer at surface of building elements

Actions on Structures Exposed to Fire EN 1991-1-2 - Actions on structures exposed to fire

Nominal temperature-time curves

Standard temperature-time curve External fire curve Hydrocarbon curve

Natural fire models

Simplified fire models

Compartment fires - Parametric fire Localised fires – Heskestad or Hasemi

Localised lifes – Heskeslad of Has

Advanced fire models

Two-Zones or One-Zone fire or a combination

CFD – Computational Fluid Dynamics

Cost

Actions on Structures Exposed to Fire EN 1991-1-2 - Prescriptive rules or performance-based approach

Simplified fire models Nominal Temperature-Time Curve

EC3 and EC9 do not use this external fire curve. A special Annex B on both Eurocodes gives a method for evaluating the heat transfer to external steelwork

universidade de aveiro

List of Physical Parameters needed for Natural Fire Models

- **Boundary properties**
- Ceiling height

Opening Area

Fire area

Rate of heat release

Fire load density

universidade de aveiro

Characteristics of the Fire Compartment Natural Fire Model

Characteristics of the Fire Load from EN 1991-1-2 Natural Fire Model

Occupancy	Fire Growth Rate	RHR _f [kW/m²]	Fire Load q _{f,k} 80% fractile [MJ/m²]
Dwelling	Medium	250	948
Hospital (room)	Medium	250	280
Hotel (room)	Medium	250	377
Library	Fast	500	1824
Office	Medium	250	511
School	Medium	250	347
Shopping Centre	Fast	250	730
Theatre (movie/cinema)	Fast	500	365
Transport (public space)	Slow	250	122

-			۰.
	_	_	
	-	_	
	-		
		_	
		_	

 δ_{n}

universidade de aveiro

29

Design value of the fire load density Natural Fire Model

$$\mathbf{q}_{\mathsf{f},\mathsf{d}} = \mathbf{q}_{\mathsf{f},\mathsf{k}} \cdot \mathbf{m} \cdot \delta_{\mathsf{q}1} \cdot \delta_{\mathsf{q}2} \cdot$$

[MJ/m²]

- m Combustion factor. Its value is between 0 and 1. For mainly cellulosic materials a value of 0.8 may be taken. Conservatively a value of 1 can be used
- δ_{q1} factor taking into account the fire activation risk due to the size of the compartment
- δ_{q2} factor taking into account the fire activation risk due to the type of occupancy
- δ_n factor taking into account the different fire fighting measures

$$\delta_{n} = \prod_{i=1}^{10} \delta_{ni} = \delta_{n1} \cdot \delta_{n2} \cdots \delta_{n9} \cdot \delta_{n10}$$

30

Characteristics of the Fire Load from EN 1991-1-2 Natural Fire Model

	Compartment floor area A _f [m ²] Danger of Fire Activation δ_{q1}		ctivation	Dang Fire Acti δ			Examp of Occupa		
	2	:5		1,10	0 ,	,78		lery, museu ing pool	ım,
	2	50		1,50	1,	00		nce, hotel, c ctory for m	
		500		1,90	· · · · · · · · · · · · · · · · · · ·	22	& engin	ies al laborato	ry,
	50	000		2,00	1,	44		g workshop ctorv of fire	
Ľ	n	ı —	δ	δ		3	m	n	
	Automatic Fire S	•	•	δ _{q2} .	3∏		m Tire Suppr		k
	0	Suppression	•	Fire Detection Automatic Alarm Transmission to Fire Brigade	Work Fire Brigade ^δ n6				k Smoke Exhaust System δ _{n10}

CCOSE

universidade de aveiro

31

Rate of Heat Release Curve from EN 1991-1-2 Natural Fire Model

Rate of Heat Release of a class 3 car. Experimental evaluation Natural Fire Model

Demonstration of real fire tests in car parks and high buildings - Contract no. 7215 PP 025, Projecto Europeu

An idealized Rate of Heat Release Curve for a car burning Natural Fire Model

Class 3	
Time (min)	Rate of heat
	release (MW)
0	0
4	1.4
16	1.4
24	5.5
25	8.3
27	4.5
38	1
70	0

From ECSC Project: Demonstration of real fire tests in car parks and high buildings.

Localised Fire: HESKESTAD Method Natural Fire Model

Annex C of EN 1991-1-2:

- Flame is not impacting the ceiling of a compartment ($L_f < H$)
- Fires in open air

$$\Theta_{(z)} = 20 + 0.25 (0.8 \text{ Q}_{c})^{2/3} (z-z_{0})^{-5/3} \le 900^{\circ}\text{C}$$

The flame length L_f of a localised fire is given by :

 $L_f = -1,02 D + 0,0148 Q^{2/5}$

35

universidade de aveiro

Localised Fire:HASEMI Method Natural Fire Model

Annex C of EN 1991-1-2: • Flame is impacting the ceiling $(L_f > H)$

Localised fires in a car park Some fire scenarios

Height: H = 2.7 mDiameter of flame: D = 3.9 m

Steel Beams: IPE 500

Cost

Localised fire Rate of heat release of four burning cars

Curve of the rate of heat release of each car. A delay of 12 minutes between each burning car.

From ECSC Project: Demonstration of real fire tests in car parks and high buildings.

37

Two Localised fire models Flame length

Hasemi method Horizontal distances

Program Elefir-EN

Temperature development Gas and steel temperture

universidade de aveiro

Parametric fire. Needed parameters Natural Fire Model

Fire load density - $Q_{f,d}$

Opening factor - $O = A_v \sqrt{h} / A_t$ Wall factor - $b = \sqrt{\rho c \lambda}$ Temperature $\theta = \theta(t)$

 A_v - area of vertical openings; A_t - total area of enclosure Limitations :

- $A_{floor} \le 500 \text{ m}^2$
- No horizontal openings
- H ≤ 4 m
- Wall factor from 1000to 2200
- Fire load density, q_{t d} from 50 to 1000 MJ/m²

universidade de aveiro

Parametric Fire Natural Fire Model

Parametric Fire - Influence of the Actives Fire Safety Measures Natural Fire Model

No Fire Active Measures		1567 = 511x0,8x1,14x1x 1x1x1x1x1x1x1,5x1,5x1,5
Off Site Fire Brigade		
Safe access routes		815 = 511x0,8x1,14x1x 1x1x1x1x1x0,78x1x1,5x1,5
Automatic Fire Detection & Alarm by Smoke		207 544-0 0-4 44-4-
Fire fighting devices		397 = 511x0,8x1,14x1x 1x1x1x0,73x1x1x0,78x1x1x1,5
Automatic water extinguishing system - Sprinklers		240 544-0 2-4 44-4-
Automatic akarm transmission to fire brigade		210 = 511x0,8x1,14x1x 0,61x1x1x0,73x0,87x1x0,78x1x1,5x1,5

 $A_f = 45,0 \text{ m}^2$ $O = 0,08 \text{ m}^{1/2}$ $q_{f,k} = 511 \text{ MJ/m}^2$ m = 0,8

Office

Fire Design of Steel Structures Four steps

- **1.** Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- 3. Calculation of temperature evolution within the structural members EC3
- 4. Calculation of the mechanical behaviour of the structure exposed to fire EC3

Actions on Structures

Actions on Structures

universidade de aveiro

Combination Rules for Mechanical Actions EN 1990: Basis of Structural Design

• At room temperature (20 °C)

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,1} \psi_{0,i} \cdot Q_{k,i}$$

In fire situation

- 1. Fire is an accidental action.
- 2. The simultaneous occurrence of other independent accidental actions need not be considered

$$\sum_{j\geq 1} G_{k,1} + (\psi_{1,1}) \psi_{2,1} \cdot Q_{k,1} + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} + A_{d}$$

ψ_{1,1} Q_{k,1} – Frequent value of the representative value of the variable action Q₁
 ψ_{2,1} Q_{k,1} – Quasi-permanent value of the representative value of the variable action Q₁
 A_d – Indirect thermal action due to fire induced by the restrained thermal expansion may be neglected for member analysis

universidade de aveiro

Combination Rules for Mechanical Actions EN 1990: Basis of Structural Design

$\sum_{j\geq 1} G_{k,1} + (\psi_{1,1} \text{ ou } \psi_{2,1})$	$)\cdot Q_{\scriptscriptstyle k,1}$	$+\sum_{i>1}\psi_{2}$	$_{2,i}\cdot Q_{_{k,i}}+A_{_d}$
Action	Ψ1	Ψ2	
Imposed loads in buildings, category (see EN 1991-1-1)	0.5	0.3]
Imposed loads in congregation areas and shopping areas	0.7	0.6	
Imposed loads in storage areas	0.9	0.8	1 +
vehicle weight \leq 30 kN	0.7	0.6	In some countries the
30 kN \leq vehicle weight \leq 160 kN	0.5	0.3	National Annex recommends Ψ ₁ ,Q ₁ , so
Imposed loads in roofs	0.0	0.0	that wind is always
Snow (Norway, Sweden)	0.2	0.0	considered and so
Wind loads on buildings	0.2	0.0	horizontal actions are always taken into
	$\overbrace{\uparrow}$		account 49

universidade de aveiro

Fire Design of Steel Structures Four steps

- **1.** Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1

3. Calculation of temperature evolution within the structural members - EC3

4. Calculation of the mechanical behaviour of the structure exposed to fire - EC3

Thermal response

Heat conduction equation

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial \theta}{\partial y} \right) + \dot{Q} = \rho c_p \frac{\partial \theta}{\partial t}$$

Boundary conditions

 $q_c = h_c(\theta - \theta_{\infty})$ convection

$$q_{\rm r} = \beta \varepsilon (\theta^4 - \theta_a^4) = \underbrace{\beta \varepsilon (\theta^2 + \theta_a^2)(\theta + \theta_a)}_{h_r} (\theta - \theta_a) = h_r (\theta - \theta_a) \quad \text{radiation}$$

5	4
ວ	1
~	

Temperature increase of unprotected steel Simplified equation of EC3

Temperature increase in time step Δt :

$$\Delta \theta_{a.t} = k_{sh} \frac{A_m/V}{c_a \rho_a} \dot{h}_{net,d} \Delta t$$

Heat flux $\dot{h}_{net,d}$ has 2 parts:

Radiation:

$$\dot{h}_{net,r} = 5,67 \times 10^{-8} \Phi \epsilon_{f} \epsilon_{m} \left(\left(\theta_{r} + 273 \right)^{4} - \left(\theta_{m} + 273 \right)^{4} \right)$$

Convection:

$$\dot{h}_{net,c} = \alpha_{c} \left(\theta_{g} - \theta_{m} \right)$$

universidade de aveiro

53

Section factor A_m/V Unprotected steel members

Nomogram for temperature Unprotected steel profiles

Nomogram for unprotected steel members subjected to the ISO 834 fire curve, for different values of $k_{sh} \cdot Am/V$ [*m*-1]

56

Structural fire protection

Passive Protection

Insulating Board

Gypsum, Mineral fibre, Vermiculite. Easy to apply, aesthetically acceptable. Difficulties with complex details.

Cementitious Sprays

Mineral fibre or vermiculite in cement binder. Cheap to apply, but messy; clean-up may be expensive. Poor aesthetics; normally used behind suspended ceilings.

Intumescent Paints

Decorative finish under normal conditions. Expands on heating to produce insulating layer. Can be done off-site.

-			
-	_		
-			

universidade de aveiro

57

Columns:

Structural fire protection

Beams:

Structural fire protection Intumescent paint

59

Structural fire protection Cementitious Sprays

universidade de aveiro

Structural fire protection Insulating Board

Section factor A_p/V Protected steel members

Nomogram for temperature Protected steel profiles

Nomogram for unprotected steel members subjected to the ISO 834 fire curve, for different values of $[A_p/V][\lambda_p/d_p]$ [W/Km3]

64

Fire Design of Steel Structures Four Steps

- 1. Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- **3.** Calculation of temperature evolution within the structural members EC3

4. Calculation of the mechanical behaviour of the structure exposed to fire - EC3

universidade de aveiro

Degree of simplification of the structure

Analysis of: a) Global structure; b) Parts of the structure; c) Members

universidade de aveiro

Mechanical properties of carbon steel Stress-strain relationship at elevated temperatures

Mechanical properties of carbon steel <u>Stress-strain relationship at elevated temperatures</u> Stress (N/mm²)

- Strength/stiffness reduction factors for elastic modulus and yield strength (2% total strain).
- Elastic modulus at 600°C reduced by about 70%.
- Yield strength at 600°C reduced by over 50%.

Reduction factors for stress-strain relationship of carbon steel at elevated temperatures

	Reduction factors at te	mperature θ_a relative to	to the value of f_y or E_a
		at 20°C	
Steel Temperature θ_{a}	Reduction factor (relative to fy) for effective yield strength	Reduction factor (relative to f _y) for proportional limit	Reduction factor (relative to E_a) for the slope of the linear elastic range
-	$k_{\mathrm{y},\mathrm{\theta}} = f_{\mathrm{y},\mathrm{\theta}}/f_{\mathrm{y}}$	$k_{\mathrm{p}, \Theta} = f_{\mathrm{p}, \Theta} / f_{\mathrm{y}}$	$k_{\mathrm{E},0} = E_{\mathrm{a},0}/E_{\mathrm{a}}$
20°C	1,000	1,000	1,000
100°C	1,000	1,000	1,000
200°C	1,000	0,807	0,900
300°C	1,000	0,613	0,800
400°C	1,000	0,420	0,700
500°C	0,780	0,360	0,600
600°C	0,470	0,180	0,310
700°C	0,230	0,075	0,130
800°C	0,110	0,050	0,090
900°C	0,060	0,0375	0,0675
1000°C	0,040	0,0250	0,0450
1100°C	0,020	0,0125	0,0225
1200°C	0,000	0,0000	0,0000

- 1. Time: t_{fi,d} > t_{fi,requ}
- 2. Load resistance: R_{fi,d,t} > E_{fi,d}
- 3. Temperature: $\theta_d < \theta_{cr,d}$

Checking Fire Resistance: Strategies with natural fires

1. Load resistance:

$R_{fi,d,t} > E_{fi,d}$

collapse is prevented during the complete duration of the fire including the decay phase or during a required period of time.

2. Temperature:

$\theta_d < \theta_{cr,d}$

collapse is prevented during the complete duration of the fire including the decay phase or during a required period of time.

Note: With the agreement of authorities, verification in the time domain can be also performed. The required periodo of time defining the fire resistance must be accepted by the authorities.

universidade de aveiro

Checking Fire Resistance: Strategies with natural fires

The Load-bearing function is ensured if collapse is prevented during the complete duration of the fire including the decay phase, or during a required period of time.

Collapse is prevented during the complete duration of the fire including the decay phase.

Collapse is prevented during a required period of time, t¹_{fi.reg}.

Design methods

□ Tabulated data (EC2, EC4, EC6)

□ Simple calculation models (All the Eurocodes)

□ Advanced calculation models (All the Eurocodes)

universidade de aveiro

Eurocode 2: Tabulated data Fire resistance of a RC beam

Table 5.5: Minimum dimensions and axis distances for simply supported beams made with reinforced and prestressed concrete

	Standard fire resistance		Minimum dimensions (mm)								
		Passible car	mbinatio	ns of a a	and b _{min}	Web thickness b _w					
		where a distance a	nis the a and b _{min} beam	is the wi		Class WA	Class WB	Class WC			
	1	2	3	4	5	6	7	8			
a	R 30	$b_{min} = 80$ a = 25	120 20	160 15*	200 15*	80	80	80			
	R 60	b _{min} = 120 a = 40	160 35	200 30	300 25	100	80	100			
	R 90	b _{min} = 150 a = 55	200 45	300 40	400 35	110	100	100			
k	R 120	b _{min} = 200 a = 65	240 60	300 55	500 50	130	120	120			
	R 180	h= 240 a = 80	300 70	400 65	600 60	150	150	140			
	R 240	b _{min} = 280 a = 90	350 80	500 75	700 70	170	170	160			
	a _{ad} = a below)	+ 10mm	(see n	ote			1				
	For prestresse	d beams the	increase	e of axis	distance	e according to	5.2(5) should	d be noted.			
			layer of	reinford	ement.	For values of					

74

Eurocode 4: Tabulated data Fire resistance of a RC column

Table 4.4: Minimum cross-sectional dimensions, minimum concrete cover of the steel section and minimum axis distance of the reinforcing bars, of composite columns made of totally encased steel sections.

75

universidade de aveiro

Design procedures

□ Tabulated data (EC2, EC4, EC6)

□ Simple calculation models (All the Eurocodes)

Advanced calculation models (All the Eurocodes)

universidade de aveiro

Eurocode 4: Simple calculation model Sagging moment resistance of a composite beam

77

Eurocode 2: Simplified calculation model 500°C isotherm method

Damaged concrete, i.e. concrete with temperatures in excess of 500°C, is assumed not to contribute to the load bearing capacity of the member, whilst the residual concrete cross-section retains its initial values of strength and modulus of elasticity.

Eurocode 2: Simplified calculation model Sagging moment resistance of a RC beam

Eurocode 3 Classification of the cross-sections - 1

Steel profiles can be considered as na assembly of individual plates

a) Rolled section; b) Hollow section; c) Welded section

Eurocode 3 Classification of the cross-sections - 2

The slenderness of the compression plates is a key parameter when studying the local buckling of plates

$$\overline{\lambda}_{p} = \sqrt{\frac{f_{y}}{\sigma_{cr}}} = \sqrt{\frac{f_{y}}{k_{\sigma}} \frac{\pi^{2} E t^{2}}{12(1-v^{2})b^{2}}} = \frac{b/t}{\sqrt{k_{\sigma}} \sqrt{\frac{\pi^{2}}{12(1-v^{2})}}} \frac{1}{\sqrt{\frac{E}{f_{y}}}} =$$

$$= \frac{b/t}{28.4\sqrt{k_{\sigma}}} \frac{1}{\sqrt{\frac{235}{f_{y}}} \sqrt{\frac{E}{210000}}} = \frac{b/t}{28.4\sqrt{k_{\sigma}}} \frac{1}{\varepsilon} = \frac{b/t}{28.4\varepsilon\sqrt{k_{\sigma}}}$$

$$\varepsilon = \sqrt{\frac{235}{f_{y}}} \sqrt{\frac{E}{210000}} \quad \text{with} \quad f_{y} \text{ and } E \text{ in MPa}$$

This parameter is widly used in EC3

Classification of the cross-sections - 3

Cross-sections are classified based on the parameter

$$\epsilon = \sqrt{\frac{235}{f_y}} \sqrt{\frac{E}{210000}} \quad \text{ with } f_y \text{ and } E \text{ in MPa}$$

For the case of carbon steel at normal temperature the, Young modulus takes the value 210 GPa:

Classification of the cross-sections - 4

$$\epsilon_{\theta} = \sqrt{\frac{235}{f_{y,\theta}}} \sqrt{\frac{E_{\theta}}{210000}} = \sqrt{\frac{235}{k_{y,\theta}f_{y}}} \sqrt{\frac{k_{E,\theta}E}{210000}} = \sqrt{\frac{k_{E,\theta}}{k_{y,\theta}}} \sqrt{\frac{235}{f_{y}}} \sqrt{\frac{E}{210000}} = \frac{\sqrt{\frac{k_{E,\theta}}{k_{y,\theta}}}}{\sqrt{\frac{235}{f_{y}}}} \sqrt{\frac{235}{f_{y}}} \sqrt{\frac{235}{f_{y}}} = 0.85\epsilon$$

84

600 900 1200 Temperature (°C)

300

900 1200

$$N_{fi,\theta,Rd} = k_{y,\theta}Af_y / \gamma_{M,fi}$$

or

$$N_{fi,\theta,Rd} = k_{y,\theta} N_{Rd} [\gamma_{M0} / \gamma_{M,fi}]$$

 N_{Rd} = design resistance of the cross-section $N_{pl,Rd}$ section $N_{pl,Rd}$ for normal temperature design

0

Eurocode 3: Fire Resistance: Compression members with Class 1, 2 or 3 cross-sections - 1

Eurocode 3: Fire Resistance: Laterally restrained beams with Class 1, 2 or3 cross-sections with uniform temperature - 1

• The design moment resistance of a Class 1, 2 or Class 3 cross-section with a uniform temperature θ_a is:

$$\mathbf{M}_{\mathsf{fi},\theta,\mathsf{Rd}} = \mathbf{M}_{\mathsf{Rd}} \mathbf{k}_{\mathsf{y},\theta} \left(\frac{\gamma_{\mathsf{M0}}}{\gamma_{\mathsf{M},\mathsf{fi}}} \right)$$

 $M_{Rd} = M_{pl,Rd} - Class 1$ or 2 cross-sections

 $M_{Rd} = M_{el,Rd} - Class 3$ cross-sections

Eurocode 3: Fire Resistance: Laterally restrained beams with Class 1, 2 or 3 cross-sections with non-uniform temperature - 2

Eurocode 3: Fire Resistance: Laterally restrained beams with Class 1, 2 or 3 cross-sections with non-uniform temperature - 3

Adaptation factores to take into account the non-uniform temperature distribution

Moment Resistance:

$$M_{fi,\theta,Rd} = M_{Rd} k_{y,\theta} \left(\frac{\gamma_{M0}}{\gamma_{M,fi}} \right) \frac{1}{\kappa_1 \kappa_2}$$

 K_2 is an adaptation factor for non-uniform temperature along the beam.

 $K_2=0,85$ at the supports of a statically indeterminate beam

 $K_2=1.0$ in all other cases

Eurocode 3: Fire Resistance: Laterally unrestrained beams - 2

- Design lateral torsional buckling resistance moment of a laterally unrestrained beam at the max.
 temp. in the comp. flange θ_{a.com} is →
- $\chi_{LT.fi}$ the reduction factor for lateraltorsional buckling in the fire design situation.

$$\overline{\lambda}_{_{LT.\theta.com}} = \overline{\lambda}_{_{LT}} \sqrt{k_{_{y.\theta.com}} / k_{_{E.\theta.com}}}$$

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}}$$

$$M_{b.fi.\theta.Rd} = \chi_{LT.fi} W_y k_{y.\theta.com} f_y \frac{1}{\gamma_{M.fi}}$$

$$\chi_{LT,fi} = \frac{1}{\phi_{LT,\theta,com} + \sqrt{\left[\phi_{LT,\theta,com}\right]^2 - \left[\overline{\lambda}_{LT,\theta,com}\right]^2}}$$

$$\phi_{LT,\theta,com} = \frac{1}{2} \left[1 + \alpha \overline{\lambda}_{LT,\theta,com} + (\overline{\lambda}_{LT,\theta,com})^2 \right]$$

$$\alpha = 0.65 \sqrt{235/f_y}$$
(Curves a, b, c, d)
⁹²

Eurocode 3: Fire Resistance Shear Resistance

Design shear resistance

$$V_{\text{fi,t,Rd}} = k_{y,\theta,\text{web}} V_{\text{Rd}} \! \left(\frac{\gamma_{\text{M,0}}}{\gamma_{\text{M,fi}}} \right)$$

 $V_{\rm Rd}$ is the shear resistance of the gross cross-section for normal temperature design, according to EN 1993-1-1.

 θ_{web} is the average temperature in the web of the section.

 $k_{y,\theta,\textit{web}}$ is the reduction factor for the yield strength of steel at the steel temperature θ_{web} .

Eurocode 3: Members with Class 1, 2 or 3 cross-sections, subject to combined bending and axial compression - 1

Without lateral-torsional buckling

Class 1 and 2

$$\frac{N_{\text{fi,Ed}}}{\chi_{\text{min,fi}} \ A \ k_{y,\theta}} \frac{f_y}{\gamma_{\text{M,fi}}} + \frac{k_y \ M_{y,\text{fi,Ed}}}{W_{\text{pl,y}} \ k_{y,\theta}} \frac{f_y}{\gamma_{\text{M,fi}}} + \frac{k_z \ M_{z,\text{fi,Ed}}}{W_{\text{pl,z}} \ k_{y,\theta}} \frac{\leq 1}{\gamma_{\text{M,fi}}}$$

Class 3

$$\frac{N_{\text{fi,Ed}}}{\chi_{\text{min,fi}} \ A \ k_{y,\theta}} \frac{f_y}{\gamma_{\text{M,fi}}} + \frac{k_y \ M_{y,\text{fi,Ed}}}{W_{\text{el,y}} \ k_{y,\theta}} \frac{f_y}{\gamma_{\text{M,fi}}} + \frac{k_z \ M_{z,\text{fi,Ed}}}{W_{\text{el,z}} \ k_{y,\theta}} \frac{f_y}{\gamma_{\text{M,fi}}} \leq 1$$

93

Eurocode 3: Members with Class 1, 2 or 3 cross-sections, subject to combined bending and axial compression - 2

With lateral-torsional buckling

Class 1 and 2

$$\frac{\mathsf{N}_{\mathsf{fi},\mathsf{Ed}}}{\chi_{\mathsf{z},\mathsf{fi}} \mathsf{A} \mathsf{k}_{\mathsf{y},\theta} \cdot \frac{\mathsf{f}_{\mathsf{y}}}{\gamma_{\mathsf{M},\mathsf{fi}}}} + \frac{\mathsf{k}_{\mathsf{LT}} \mathsf{M}_{\mathsf{y},\mathsf{fi},\mathsf{Ed}}}{\chi_{\mathsf{LT},\mathsf{fi}} \mathsf{W}_{\mathsf{pl},\mathsf{y}} \mathsf{k}_{\mathsf{y},\theta} \cdot \frac{\mathsf{f}_{\mathsf{y}}}{\gamma_{\mathsf{M},\mathsf{fi}}}} + \frac{\mathsf{k}_{\mathsf{z}} \mathsf{M}_{\mathsf{z},\mathsf{fi},\mathsf{Ed}}}{\mathsf{W}_{\mathsf{pl},\mathsf{z}} \mathsf{k}_{\mathsf{y},\theta} \cdot \frac{\mathsf{f}_{\mathsf{y}}}{\gamma_{\mathsf{M},\mathsf{fi}}}} \leq 1$$

Class 3

$$\frac{\mathsf{N}_{\mathsf{fi},\mathsf{Ed}}}{\chi_{z,\mathsf{fi}} \mathsf{A} \mathsf{k}_{y,\theta}} \frac{\mathsf{f}_{y}}{\gamma_{\mathsf{M},\mathsf{fi}}} + \frac{\mathsf{k}_{\mathsf{LT}} \mathsf{M}_{y,\mathsf{fi},\mathsf{Ed}}}{\chi_{\mathsf{LT},\mathsf{fi}} \mathsf{W}_{\mathsf{el},y} \mathsf{k}_{y,\theta}} \frac{\mathsf{f}_{y}}{\gamma_{\mathsf{M},\mathsf{fi}}} + \frac{\mathsf{k}_{z} \mathsf{M}_{z,\mathsf{fi},\mathsf{Ed}}}{\mathsf{W}_{\mathsf{el},z} \mathsf{k}_{y,\theta}} \frac{\mathsf{f}_{y}}{\gamma_{\mathsf{M},\mathsf{fi}}} \leq 1$$

Fire Resistance: verifications of the fire resistance not covered by EN 1993-1-2

Clause 1.1.2 (Scope of Part 1.2 of Eurocode 3) of EN 1993-1-2 states "This Part 1-2 of EN 1993 deals with the design of steel structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1993-1-1 and EN 1991-1-2. This part 1.2 only identifies differences from or supplements to normal temperature design"

This means that for the cases not covered by EN 1993-1-2, the formulae from the part 1.1 of EC3 should be used but modified for use at elevated temperature.

95

Fire Resistance: Cross-sectional verification of a member subjected to bending and axial force (compression or tension) - 1

For class 1 and class 2

where $M_{N,y,fi,Rd}$ and $M_{N,z,fi,Rd}$ are the the design plastic moment resistance reduced due to the axial force.

For class 3

$$\frac{N_{fi,Ed}}{N_{fi,Rd}} + \frac{M_{y,fi,Ed}}{M_{y,fi,Rd}} + \frac{M_{z,fi,Ed}}{M_{z,fi,Rd}} \le 1.0$$

7
1

Fire Resistance: Cross-sectional verification of a member subjected to bi-axial bending - 1

For class 1 and class 2

$$\left[\frac{M_{\text{y,fi,Ed}}}{M_{\text{y,fi,Rd}}}\right]^{\alpha} + \left[\frac{M_{\text{z,fi,Ed}}}{M_{\text{z,fi,Rd}}}\right]^{\beta} \le 1.0$$

Example: a purlin

For class 3

$$\frac{M_{\text{y,fi,Ed}}}{M_{\text{y,fi,Rd}}} + \frac{M_{\text{z,fi,Ed}}}{M_{\text{z,fi,Rd}}} \leq 1.0$$

universidade de aveiro Professor Paulo Vila Real

Eurocode 3: Fire Resistance

Design yield strength to be used with simple calculation models.

Eurocode 3: Fire Resistance Members with Class 4 cross-sections

Two procedures:

- 1. In the absence of calculation, a critical temperature of 350 °C should be considered (conservative results).
- 2. Alternatively use Annex E, considering the effective area and the effective section modulus determined in accordance with EN 1993-1-3 and EN 1993-1-5, i.e. based on the material properties at 20°C.

 $\overline{\lambda}_{p,\theta} \approx \overline{\lambda}_{20^{\circ}C}$ (Slenderness of the plates)

(See next slide)

universidade de aveiro Professor Paulo Vila Real

Eurocode 3: Fire Resistance

Non-dimensional slenderness of plates

- At normal temperature $\overline{\lambda}_p = \sqrt{\frac{f_y}{\sigma_{cr}}} = \sqrt{\frac{f_y}{k_\sigma \frac{\pi^2 E t^2}{12(1-v^2)b^2}}}$

- At elevated temperature

$$\overline{\lambda}_{p,\theta} = \sqrt{\frac{f_{y,\theta}}{\sigma_{cr,\theta}}} = \sqrt{\frac{f_{y,\theta}}{k_{\sigma} \frac{\pi^2 E_{\theta} t^2}{12(1-v^2)b^2}}} =$$

$$\sqrt{\frac{k_{y,\theta}f_y}{k_{\sigma}\frac{\pi^2 k_{E,\theta}Et^2}{12(1-\nu^2)b^2}}} = \overline{\lambda}_p \sqrt{\frac{k_{y,\theta}}{k_{E,\theta}}}$$

Eurocode 3: Fire Resistance Non-dimensional slenderness of plates at elevated temperature

Eurocode3: Fire Resistance Concept of critical temperature - 1

universidade de aveiro

103

Eurocode3: Fire Resistance Concept of critical temperature - 2

EN 1993-1-2:

4.2.4 Critical temperature

As an alternative to 4.2.3, verification may be carried out in the temperature domain. (1)

Except when considering deformation criteria or when stability phenomena have to be taken into (2) account, the critical temperature $\theta_{a,cr}$ of carbon steel according to 1.1.2 (6) at time t for a uniform temperature distribution in a member may be determined for any degree of utilization μ_0 at time t = 0using:

$$\theta_{a,cr} = 39,19 \ln \left[\frac{1}{0,9674 \,\mu_0^{3,833}} - 1 \right] + 482 \tag{4.22}$$

where μ_0 must not be taken less than 0.013.

What is the meaning of this equation?

Eurocode 3: Fire Resistance Concept of critical temperature - 3

The best fit curve to the points of this table can be obtained as: -

universidade de aveiro

Eurocode 3: Fire Resistance Concept of critical temperature - 4

$$k_{y,\theta} = \left\{ 0.9674 \left(e^{\frac{\theta_a - 482}{39.19}} + 1 \right) \right\}^{-\frac{1}{3.833}} \le 1$$

$$\theta_{a,cr} = \left(k_{y,\theta} \right)^{-1}$$

$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0,9674k_{y,\theta}^{3.833}} - 1 \right] + 482$$

106

Fire Resistance:

Concept of critical temperature for a member in tension -1

universidade de aveiro

Eurocode 3: Fire Resistance Concept of critical temperature for a member in tension - 2

- Resistance at normal temperature:

$$N_{Rd} = Af_y / \gamma_{M0}$$

- Resistance in fire situation:

Eurocode 3: Fire Resistance Concept of critical temperature for a member in tension - 3

Eurocode 3: Fire Resistance Concept of critical temperature for a member in tension - 4

	Reduction fa	actors at tempe	erature θ_a relative at 20°C	to the value of f_y or E_a		
Steel emperature θ_a	Reduction factor (relative to f_y) for effective yield strength	Reduction factor (relative to f_y) for proportional limit	Reduction factor (relative to E_a) for the slope of the linear elastic range	Reduction factor (relative to f_y) for the design strength of hot rolled and welded thin walled sections (Class 4)	$\theta_{a, cr}$	
20 °C	$k_{y,\theta}=f_{y,\theta}/f_y$ 1.000	$k_{p,\theta}=f_{p,\theta}/f_y$ 1.000	$k_{E,\theta} = E_{a,\theta}/E_a$ 1.000	$k_{0.2p,\theta} = f_{0.2p,\theta}/f_y$ 1.000		
100 °C	1.000	1.000	1.000	1.000		
200 °C	1.000	0.807	0.900	0.890		
	1 000	0.613	0.800	0.780		
		0.420	0.700	0.650		
$\theta_{\rm a,cr}$	- k _{y,θ}	0.360	0.600	0.530		
600 °C	0.470	0.180	0.310	0.300		
700 °C	0.230	0.075	0.130	0.130		. K
800 °C	0.110	0.050	0.090	0.070	V	
900 °C	0.060	0.0375	0.0675	0.050		
1000 °C	0.040	0.0250	0.0450	0.030		I 1 4∕
1100 ℃	0.020	0.0125	0.0225	0.020	$\theta_{a,cr} = 39.19 \ln \left \frac{1}{1 + 482} \right $	'
1200 °C	0.000	0.0000	0.0000	0.000	$0,9674k_{y,\theta}$	

 $\mathbf{k}_{y,\theta} = \mathbf{N}_{fi,Ed} / (\mathbf{A}f_y / \gamma_{M,fi})$

Eurocode 3: Fire Resistance Concept of critical temperature for a member in tension - 5

$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0,9674k_{y,\theta}^{3,833}} - 1 \right] + 482$$

$$\mu_0 = \frac{E_{fi,d}}{R_{fi,d,0}} = k_{y,\theta}$$
 For the case of tension

universidade de aveiro

Design procedures

- □ Tabulated data (EC2, EC4, EC6)
- □ Simple calculation models (All the Eurocodes)
- □ Advanced calculation models (All the Eurocodes)

Examples using different methodologies. Fire resistance of steel structures

- Using tables from the suppliers of the fire protection material
 Prescriptive approach
- Comparison between simplified calculation methods and advanced calculation models – Prescriptive / Performance-based approach
- Cases where it is not possible to use simplified calculation method
 Performance-based approach

117

Single storey hall – R60 Steel grade S355 Å Á Ŕ \$ 6 x 14 = 84 m Å 2.0 m 1.85 m TIT Å **IPE500** 8.15 m $\theta_{cr} = ?$ 2.75 x 24 = 66 m Intumescent = ?

Load combinations

G – Dead load Q – Live load in the roof W - Wind

Load combination 1: $G + \psi_{1,Q}Q + \psi_{2,W}W = G + 0.0Q + 0.0W = G$

Load combination 2: $G+\psi_{1,W}W+\psi_{2,Q}Q=G+0.2W+0.0Q=G+0.2W$

1	1	a
ı,		Э

Critical temperature for load combination 1

Critical temperature for load combination 1

Select load: View Help • No moments about the major axis (My,t.5e = 0) • End moments • O M1 • YM1 Buckling resistance of the element Buckling resistance of the element	🖥 Loads			
Select load: C No moments about the major axis C Moments C Moments due to include loads M1	File Help			1=1-
-1≤Ψ≤1 Critical temperature: 656.0 °C (Reduction factor, k _{y,0} : 0.336) File Help M1 M2 Critical temperature: 746.3 °C (Reduction factor, k _{y,0} : 0.174) Critical temperature used in the next calculations: 656.0 °C	Select load: No moments about the major axis (M _{y,f,Ed} = 0) End moments Moments due to in-plane lateral loads End moments File Help	M1 -1≤Ψ≤1 ■□J	View Help IPE 500 (Class 1) Buckling resistance of the element Critical temperature: 656.0 °C (Reduction factor, k _{y,0} : 0.336) Resistance of the cross-section Critical temperature: 746.3 °C (Reduction factor, k _{y,0} : 0.174)	
M ₁ (> or < 0) = 135.9 kNm	M ₂ (> or < 0) = 0		kCri	tical time

Critical temperature for load combination 2

	Section - IPE 500	N [kN] -135.9 -135.9	M ₁ [kNm] 0 0	M2 [kNm] 170.9 0	q [kN/m] 0.69 0	<i>l_{fi,y}</i> [m] 16.300 -	<i>l_{fi,z}</i> [m] - 4.075			
File T Profile: Bucklin G ab	g: out y - y axis out z - z axis out z - z axis out y - y or z Axial force Design ax Bending diagra About maj Lateral torsiona Is lateral to Longih be Loeding: Calculation: Calculation: Fire resista	- z axis	System length: L y = [8150 mm L z = [4075 mm ion load: fication: ding allowed? estraints: ion of the loads tion of the loads tion of steel temperat	40)	s: 1 _{y,5} /L= 2 is: 1 _{2,5} /L= 1 4 kN	Fie H	ct load: No moments about ((M _{Y,A,Ed} = 0) End moments Moments due to in-p and end moments	lane lateral loads	MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ	
Main	Menu				Next]Bac	k			text

Critical temperature for load combination 2

Critical temperature for load combination 2

👔 Results		
File Vie	ew Help	
_		
	IPE 500 (Class 1)	
[
	Buckling resistance of the element Critical temperature: 637.6 °C (Reduction factor, $k_{y,\theta}$: 0.380)	
	Resistance of the cross-section Critical temperature: 708.8 °C (Reduction factor, $k_{y,\theta}$: 0.219)	
	Critical temperature used in the next calculations: 637.6 °C	
L		
Bacl	k	cal time

Critical temperature of the column IPE 500

θ_{a,cr} = min(656 °C; 638 °C) = 638 °C

universidade de aveiro

Critical time with ISO 834 Using Elefir-EN

Fire exposure			
File View Help			
Fire exposure:		Fire Curves	
C Fire on all sides		File View Help	-
Fire on three sides			
		Profile: IPE 500 Unprotected profile,	
		Time to reach 638.0 °C sides	No protection material
Fire protection:			
No protection		Modify Modify	Modify
C Contour encasement		Temperature-time curves:	
· Comourencesement		Standard fire curve, ISO 834	
C Hollow encasement		C Hydrocarbon fire curve	
Back	Next		
		C Localised fire	
Dack	Next	Parametric fire curve User defined fire curve Localised fire	
		Back	Calcul

127

universidade de aveiro

Critical time with ISO 834 Using Elefir-EN

Standard fire curve, ISO 834	
File View Help	
Profile: IPE 500 (unprotected)	
•	
Section factor: [A _m /V] = 133.1 m ⁻¹	
Modified section factor: $k_{sh} [A_m /V] = 93.1 m^{-1}$ (used in the calculation)	
A temperature of 638.0 °C is reached after 18.68 minutes	
Back	Graph

 $t_{fi,d} < t_{requ} = 60 \text{ min } \square$ Fire protection is needed for a critical temperature of $\theta_{a,cr} = 638 \text{ }^{\circ}\text{C}$

Critical time with ISO 834 Using Nomogram

universidade de aveiro

129

Table 3 continued: Three Sided I-Section Beams: 450°C

Table 4 continued: Three Sided I-Section Beams: 500°C

Section factor	Thickness	Section factor	Thickness	Section	Our select	60 mi	inutes	_	<u> </u>											
up to m ⁻¹		upto m ⁻¹			Section factor	Thickness	Section Thick	ickness factor		60 minutes							90 n	sinutes	120	minutes
25	0.250	175	0.888	<u> </u>	up to m ¹	nn	up to	m	Section factor	Thickness	Section factor	Thiskness	Section factor	Thickness	Section factor	Thicknes				
30	0.263	100	0.910		30	0.335		0.7	up to	mm	up to	mm	up to	mm	up to	mm				
35	0.297	185	0.933		30	0.226	180	0.7	ma		m		m		m ⁻¹					
-40	0.305	190	0.955			0.234	185	0.6	30	0.226	150	0.721	155	1.000	160	3,144				
45	0.324	195	0.978		40	0.250	190	0.8	35	0.233	155	0,743	160	1.134	165	3.242				
50	0.342	200	1.000		45	0.266	195	0.8	40	0.245	190	0.765	165	1.267	170	3.341				
55	0.961	205	1.116		50	0.283	200	0.6	45	0.257	195	0.786	170	1,401	175	3,439				
60	0.379	210	1.231		56	0.299	205	0.9	50	0.270	200	0.808	175	1.535	160	3,537				
65	0.398	215	1.347		60	0.315	210	0.9	55	0.282	206	0.830	180	1.008	185	3,635				
70	0.418	220	1,462	1	- 65	0.332	215	0.9	80	0.294	210	0.852	185	1,802	160	0.000				
75	0.438	225	1.578	1	70	0.348.	220	0.9	66	0.307	215	0,874	190	1.938	1					
60	0.400	230	1,663	1 '	75	0.354	225	0.9	70	0.319	220	0.896	196	2.070	1					
85	0.483	235	1.609	1	80	0.381	230	1.0	75	0.331	225	0.917	200	2.203	1					
90	0.505	240	1.924	1	85	0.397	235	1.1	80	0.344	230	0.939	206	2.337	ł					
95	0.528	245	2.040	1	90	0.413	240	1.2	85	0.356	235	0.961	210	2.45/	ł					
100	0.650	250	2,155	1	85	0,433	245	1.3	50	0.355	240	0.983	215	2.604	1					
105	0.573	255	2.271	1	100	0.454	250	1.4	86	0.381	245	1.015	220	2.738	1					
110	0.595	200	2.386	1	105	0.476	255	1.5	100	0.393	250	1.092	225	2.638						
115	0.618	265	2.502	1	110	0.497	200	1.0	105	0.405	255	1.168	230	3.006	4					
120	0.840	270	2.617	1	115	0.519	205	1.7	110	0.418	260	1.100								
125	0.663	275	2.733	1	120	0.540 -	270	1.8	115	0.437	265	1.320	235 240	3.139	4					
130	0.685	280	2.849	1	125	0.562	275	1.9	120	0.459	205	1.320	240							
135	0.708	285	2.984	1	130	0.583	280		125	0.481	275	1.473		3.407	1					
140	0.730	290	3.000	1	135	0.605	285	2.1	130	0.503	280	1.549	250	3.540						
145	0.753	295	3.195	1	140	0.626	290	2.2	135	0.525	285	1,648	200	3.674	1					
160	0.775	300	3.311	1	145	0.648	295	2.3	140	0.546	290	1.626								
165	0.795	305	3.426		150	0.869	300	2.6	145	0.568	290									
160	0.820	310	3.642	1	155	0.691	305	2.5	195	0.590	300	1.778								
165	0.843	315	3.657	1	150	0.712	310	2.6	155	0.612		1.854								
170	0.865			1	165	0.734	315	27	155	0.634	305 310	1.931								
					170	0.755	320	2.6	165	0.655		2.007								
innes is k	tumescent o	dy Ream	with a conce	defe also	175	0.777			170	0.677	315	2.083								
	ramesoara o	115	wine of the	010-0100					170	0.699	320	2.169								

incomes is incomercent only. Deams with

Thickness is interrespect only. Beams with a concrete alab.

This Company has sheets for the temperatures: 350, 400, 450, 500, 550, 600, 620, 650 and 700°C

Thickness of intumescent painting

Thickness of intumescent painting

In some Countries default temperatures are suggested if no calculation is made. Normally for columns or other members susceptible of instability phenomena a critical temperature of 500°C is suggested.

If, instead of a critical temperature of 638°C, a critical temperature of 500°C was used, a thickness of 0,605 mm would be obtained.

Examples using different methodologies. Fire resistance of steel structures

- Using tables from the suppliers of the fire protection material
 Prescriptive approach
- Comparison between simplified calculation methods and advanced calculation models Prescriptive / Performance-based approach
- Cases where it is not possible to use simplified calculation method
 Performance-based approach

BARREIRO RETAIL PARK

Required fire resistance 90 minutes (R90)

Different zones for fire scenarios

Temperature development for different fire scenarios

Temperatures obtained using the program Ozone

Unit B - Jumbo

Combination of actions: $1.0G_k + \psi_{1,1}Q_{k,1} = 1.0G_k + 0.0Q_{k,1} = G_k$

	N _{Ed}	M_1	M ₂		L	$\theta_{\rm cr}$	t _{fi,d}
	(kN)	(kN. m)	(kN.m)	l _{fi} /L	(m)	(°C)	(min)
HEA 260	80	0.00	23	1.0	7.3	672.9	19.25
HEA 240	34	0.00	45	1.0	7.3	593.5	15.23
IPE 360	0.00	76.0	0.0	-	-	682.8	17.92

Without fire protection

137

universidade de aveiro

Unit B - Jumbo

Deformed shape Obtained with Advanced Calculation Methods

Deformed shape of Unit B (Jumbo supermarket) after 117 minutes of exposure to a natural fire

Software: GiD (for the numerical model mesh); SAFIR (for the analysis)

139

Examples using different methodologies. Fire resistance of steel structures

- Using tables from the suppliers of the fire protection material
 Prescriptive approach
- Comparison between simplified calculation methods and advanced calculation models – Prescriptive / Performance-based approach
- Cases where it is not possible to use simplified calculation method
 Prescriptive / Performance-based approach

EXHIBITION CENTRE

Required fire resistance 120 minutes (R120)

universidade de aveiro

Main Structure

Main Portal Frame

Choice of the structural analysis

The main structure is made of non-uniform class 4 elements. There are no simplified methods, for the time being, for such type of elements. Two options were possible:

- Using a prescriptive approach, protect the structure for a citical temperature of 350°C;

- Using performance-based approach with advanced claculation methods.

Required fire resistance 120 minutes (R120)

Fire scenarios

6 fire scenarios

Fire load density reduced by 39% due to the sprinklers

Fire scenarios

C1-5 - Software OZone C6 is a localized fire in Zone C - Elefir-EN

145

Structural Analysis

Main structure – portal frame with built-up non-uniform class 4 steel elements

Software: GiD (for the numerical model mesh); SAFIR (for the analysis)

Deformed shape at Zone A, for the combination of actions 1, after 120 minutes (x20)

Conclusions

 \gg A performance-based analysis, demonstrated in this study that, protecting the structure for a standard fire resistance of 60 minutes (R60), considering a critical temperature of 500°C, the load-bearing function is ensured during the complete duration of the fire, including the cooling phase.

➤The steel structure of the Center for Exhibitions and Fairs in Oeiras consists of class 4 cross section profiles. In a prescriptive approach and without making any calculation, this structure should have been protected for a critical temperature of 350°C and for R120.

One example of a new finding that may be included in the next generation of EN 1994-1-2 – So-called MEMBRANE ACTION

One example of a new finding that may be included in the next generation of EN 1994-1-2 – So-called MEMBRANE ACTION

One example of a new finding that may be included in the next generation of EN 1994-1-2 – So-called MEMBRANE ACTION

40 to 55% of beams can be left unprotected by placing protection where it is needed.

One example of a new finding that may be included in the next generation of EN 1994-1-2 – So-called MEMBRANE ACTION

References

• Fire Design of Steel Structures, Jean-Marc Franssen and Paulo Vila Real (2010) – ECCS ed and Ernst & Sohn a Wiley Company ed. www.steelconstruct.com.

Elefir-EN V1.2.2 (2010), Paulo Vila Real and Jean-Marc Franssen, http://elefiren.web.ua.pt.
The ESDEP (1995), (European Steel Design Education Programme) Society, The Steel Construction Institute.

• MACS + (2012), Membrane Action in fire design of Composite Slab with solid and cellular steel beams - Valorisation.

• Ozone V2.2.6, (2009), http://www.arcelormittal.com/sections/.

• SAFIR - A Thermal/Structural Program Modeling Structures under Fire, Jean-Marc Franssen, http://www.s2v.be/portfolio/safir/.

• Vila Real, P. M. M.; Lopes, N. "Shopping Centre Dolce Vita em Braga, Portugal", to Martifer, S.A., LERF - Laboratório de Estruturas e Resistência ao Fogo, Universidade de Aveiro, Junho de 2009.

Vila Real, P. M. M.; Lopes, N. "Barreiro Reatail Park, Portugal", to Martifer, S.A., LERF -Laboratório de Estruturas e Resistência ao Fogo, Universidade de Aveiro, Junho de 2009.
Vila Real, P. M. M.; Lopes, N. "Shopping Centre Oeiras, Portugal", to Martifer, S.A., LERF -Laboratório de Estruturas e Resistência ao Fogo, Universidade de Aveiro, Junho de 2009.
C. G. Bailey, "Membrane action of slab/beam composite floor systems in fire", Eng. Structures 26 (2004), pp 1691-1703.

153

SiF'14 Sth International Conference on Structures In Fire Home Committees Papers Program Registration Accommodation Information Contact Information Conta

Invitation

The organizing committee and the SiF steering committee invite you to attend the "Eighth International Conference on Structures in Fire" to be held on June 11-13, 2014 at Tongji University in Shanghai, China.SiF14 will bring together academicians, researchers and engineers from around the world to discuss the latest international developments in structural fire engineering. An official website www.steelpro.net/sif14 provides the latest information on the conference. Please contact the conference secretariat at sif2014@tongji.edu.on for further information.

About SiF

READ MORE

Structural fire safety is one of the key considerations in the design of built infrastructure. Until the 1990's, there were very few forums for structural fire engineers to exchange ideas and research results. The "Structures in Fire" (SiF) specialized workshop series was conceived...

Important Dates

Thank you for your attention

pvreal@ua.pt

155