Introduction to Fire Dynamics for Structural Engineers

by Dr Guillermo Rein

Department of **Mechanical Engineering**

> Imperial College London

Training School for Young Researchers COST TU0904, Naples, June 2013

Technological Disasters 1900-2000

NOTE: Immediate fatalities as a proxy to overall damage. Disaster defined as >10 fatalities, >100 people affected, state of emergency or call for international assistance.

EM-DAT International Disaster Database, Université catholique de Louvain, Belgium. www.emdat.be

Jocelyn Hofman, Fire Safety Engineering in Coal Mines MSc Dissertation, University of Edinburgh, 2010

Fire Test at BRE commissioned by Arup 2009 4x4x2.4m – small premise in shopping mall

Al

190s

bre ARUP

285s

316s

bre ARUP

Fire Test in 4 x 4 x 2.4 m enclosure ~ small premise in shopping mall

bre ARUP

Compartment fires

Fire development in a compartment - rate of heat release as a function of time

Discipline Boundaries

Boundary between fire and structures is the intersection of the two sets

Lame Substitution of the 1st kind

When structural engineers are entirely replaced by pseudo-science. It still survives in many standards

Lame Substitution of the 2nd kind

When fire engineers are entirely replaced by pseudo-science. It is mainstream in structural engineering.

Lame Substitution of the 3rd kind

When both fire and structural engineers are simultaneously replaced by pseudo-science. Any similarities with reality is a mere coincidence.

Objective of this talk

Provide an introduction to fire dynamics to the audience, a majority of structural engineers working on fire and structures

This introduction will make emphasis on the mechanism governing fire growth in compartments

Then, two most fundamental flaws of current design fire methodologies will be reviewed

Textbooks

Introduction to fire Dynamics by Dougal Drysdale, 3rd Edition, Wiley 2011

The SFPE Handbook of Fire protection Engineering, 4th Edition, 2009

Principles of Fire Behavior by James G. Quintiere

Ignition – fuel exposed to heat

- Upon receiving sufficient heat, a solid/liquid fuel starts to decompose giving off gasses: pyrolysis
- Ignition takes place when a flammable mixture of fuel vapours is formed over the fuel surface

Pyrolysis video

Pyrolysis of clear PMMA slab 25mm thick http://www.youtube.com/watch?v=UusEwufhWaw

Time to ignition – Thick Samples

Experimental data for PMMA (polymer) from the literature. Thick samples

from Bal and Rein, **Combustion and Flame 2011**

Flammability ~ material property

Ignition Data from ASTM E-1321 per Quintiere					
Material	<i>T</i> _{ig} [°C]	<i>k</i> ρC [(kW/m² K)² s]			
Wood fiber board	355	0.46			
Wood hardboard	365	0.88			
Plywood	390	0,54			
PMMA	380	1.00			
Flexible foam plastic	390	0,32			
Rigid foam plastic	435	0.03			
Acrylic carpet	300	0.42			
Wallpaper on plasterboard	412	0.57			
Asphalt shingle	378	0.70			
Glass-reinforced plastic	390	0,32			

Source: Quintiere, J.G., Principles of Fire Behavior, Delmar Publishers, New York, 1998.

Flame Spread Rate

Flame spread is inversely proportional to the time to ignition

Thick fuel

Thin fuel

Flame Spread vs. Angle

Upward spread is 20 times faster than downward spread

Test conducted by Aled Beswick BEng 2009

Flame Spread vs. Angle

Rate of flame spread over strips of thin samples of balsa wood at different angles of 15, 90, -15 and 0°. Test conducted by Aled Beswick BEng 2009

 $http://www.youtube.com/watch?v{=}V8gcFX9jLGc$

Flame and Fire Power

Effect of heat Release Rate on Flame height (video WPI)

 $http://www.youtube.com/watch?v = 7B9-bZCCUxU\&feature = player_embedded$

Fire Power – Heat Release Rate

Heat release rate (HRR) is the power of the fire (energy release per unit time)

$$\dot{Q} = \Delta h_c \dot{m} = \Delta h_c \dot{m}'' A$$

Note: the heat of reaction is negative for exothermic reaction, but in combustion this is always the case, so we will drop the sign from the heat of combustion for the sake of simplicity

Burning rate (per unit area)

Table 9.3 Asymptotic burning rates (from various sources)

	$g/m^2 s$	
Polyvinyl chloride (granular)	16	
Methanol	21	
Flexible polyurethane (foams)	21-27	
Polymethymethacrylate	28	
Polystyrene (granular)	38	
Acetone	40	1
Gasolene	48-62	
JP-4	52-70	
Heptane	66	
Hexane	70-80	
Butane	80	
Benzene	98	
Liquid natural gas	80-100)
Liquid propane	100-13	0

from Quintiere, **Principles of Fire Behaviour**

In general, it is a material and scenario dependant. In open fires it can be approximated as a material property only.

 $\frac{q}{\Delta h}$ \dot{m}''

Heat of Combustion

		$-\Delta H_{c}$	$-\Delta H_c$	$-\Delta H_{c,air}$	$-\Delta H_{c.ok}$	
		(kJ/mol)	(kJ/g)	(kJ/g(air))	$(kJ/g(O_2))$	
Carbon monoxide	со	283	10.10	4.10	17.69	
Methane	CH₄	800	50.00	2.91	12.54	
Ethane	C_2H_6	1423	47.45	2.96	11.21	
Ethene	C_2H_4	1411	50.35	3.42	14.74	
Ethyne	C_2H_2	1253	48.20	3.65	15.73	
Propane	C_3H_8	2044	46.45	2.97	12.80	
n-Butane	n-C4H10	2650	45.69	2.97	12.80	
n-Pentane	$n-C_5H_{12}$	3259	45.27	2.97	12.80	
n-Octane	$n - C_8 H_{18}$	5104	44.77	2.97	12.80	
c-Hexane	c-C ₆ H ₁₂	3680	43.81	2.97	12.80	
Benzene	C ₆ H ₆	3120	40.00	3.03	13.06	
Methanol	CH ₃ OH	635	19.83	3.07	13.22	
Ethanol	C ₂ H ₅ OH	1232	26.78	2.99	12.88	
Acetone	(CH ₃) ₂ CO	1786	30.79	3.25	14.00	
D-Glucose	C6H12O6	2772	15.4	3.08	13.27	
Cellulose		_	16.09	3.15	13,59	
Polyethylene		_	43.28	2.93	12.65	
Polypropylene		_	43.31	2.94	12.66	
Polystyrene		_	39.85	3.01	12.97	
Polyvinylchloride		_	16.43	2.98	12.84	
Polymethylmethacrylate		_	24.89	3.01	12.98	
Polyacrylonitrile		_	30.80	3,16	13.61	
Polyoxymethylene		_	15.46	3.36	14.50	
Polyethyleneterephthalate		_	22.00	3.06	13.21	
Polycarbonate			29.72	3.04	13.12	
Nylon 6,6		_	29.58	2.94	12.67	

Table 1.13 Heats of combustion^a of selected fuels at 25°C (298 K)

It is a material property only if the combustion efficiently is also taken into account. Efficiency is scenario dependant.

^{*a*} The initial states of the fuels correspond to their natural states at normal temperature and pressure (298°C and I atm pressure). All products are taken to be in their gaseous state—thus these are the net heats of combustion.

Flame spread

On a uniform layer of fuel, isotropic spread gives a circular pattern

when flame spread is ~constant, the fire grows as $t^2\,$

t-square growth fires

Tabulated fire-growths of different fire types

$$\dot{Q} = \alpha t^2$$

Table 9.6 Parameters used for 't-squared fires' (Evans, 1995)

Description	Typical scenario	$\frac{\alpha_{\rm f}}{\rm kW/s^2}$
Slow	Densely packed paper products ^a	0.00293
Medium	Traditional mattress/boxspring ^e Traditional armchair	0.01172
Fast	PU mattress (horizontal) ^a PE pallets, stacked 1 m high	0.0469
Ultrafast	High-rack storage PE rigid foam stacked 5 m high	0.1876

^a National Fire Protection Association (1993a).

Examples of HRR

workstation

mattress

<mark>bre</mark> ARUP

Free burning vs. Confined burning

confined conditions

Smoke and walls radiate downwards to fuel items in the compartments

Sudden and generalized ignition (*flashover*)

What is flashover?

Sudden period of very rapid growth caused by generalized ignition of fuel items in the room

Some indicators:

- Average smoke temperature of ~500-600 °C
- Heat flux ~20 kW/m² at floor level
- Flames out of openings (ventilation controlled)

NOTE: These three are *not* definitions but indicators only NOTE: Average temperate of 600°C implies that the room space is occupied mostly by interment flames

I believe in human rights,

therefore:

Break of 5 min

Discipline Boundaries

$GI \Rightarrow GO$

- When problems arise at the interface between fire and structures, most consequences travel downstream, ie. towards the structural engineer
- If the input is incomplete or wrong, the subsequent analysis is flawed and cannot be trusted
- Fire is the input (boundary condition) to subsequent structures analysis.

Artist

Views of fire

Geoscientist

Forester

Structural engineer

Rest of the world

Mechanical engineer

WTC 2 - East face

White = no fire

Red = fire visible inside, Orange = external flaming, Yellow = spot fire Blue = observation not possible figures/data from NIST

Ancient Design Fires Traditional Design Fires

- ➢ Standard Fire ~1880 (on paper in ~1912)
- ➢ Swedish Curves ~1972
- Eurocode Parametric Curve ~1995

Blind extrapolation from limited experience

Fire in Small compartment

blind extrapolation

Fire in Normal compartment

Fire in Large compartment

Fire in Multistorey compartment

Scaling effects

Design Fires

"The Titanic complied with all codes. Lawyers can make any device legal, only engineers can make them safe"

> Prof VM Brannigan University of Maryland

What follows is a review of the current state of the art on design fires in fire and structures.

I believe in human rights,

therefore:

Break of 5 min

Traditional Methods

- Traditional methods are based on experiments conducted in small compartment (~3 m³)
- → 1. Traditional methods assume **uniform fires** that lead to uniform fire temperatures (?)
 - 2. Traditional methods have been said to be **conservative** (?)

Stern-Gottfried, PhD thesis, *University of Edinburgh* 2011.

Fuel Load

>Mixed livingroom/office space

>Fuel load is ~ 32 kg/m^2

>Set-up Design for robustness and high repeatability

Average Compartment Temperature

Compartment Temperature

Fig. 6. Comparisons of the measured temperature distributions against the associated normal distributions at 4 min intervals after flashover for Dalmarnock Test One.

Stern-Gottfried et al., Fire Safety Journal 45, pp. 249–261, 2010. doi:10.1016/j.firesaf.2010.03.007

Cardington Results

Stern-Gottfried et al., Fire Safety Journal 45, pp. 249–261, 2010. doi:10.1016/j.firesaf.2010.03.007

Conclusions on homogeneity

- Decently instrumented fire tests show considerable nonuniformity in the temperature field
- When exposed to 80% percentile temperatures instead of average, the time to failure decreases to 15% in Protected Steel and to 22% for Concrete.
- One single temperature for a whole compartment is not correct nor safe assumption
- Heterogeneity has significant impact on structural fire response
- Fire tests with crude spatial resolution have led to erroneous conclusions
- Futies tests should be instrumented as densely in as possible

Limitations

For example, limitations according Eurocode:

% Near rectangular enclosures
% Floor areas < 500 m²
% Heights < 4 m
% No ceilings openings
% Only medium thermal-inertia lining

< 500 m² floor? < 4 m high?

Excel, London

Proposed WTC Transit Hub

Insulating lining?

London Bridge Tower

No ceiling opening?

Arup Campus

3000 compartments

We surveyed most of the enclosures in the Kings Buildings campus of the University of Edinburgh.

- Buildings from 1850-1990: ~66% of volume within limitations
- Buildings from 2000: ~8% of volume within limitations (figure)

Modern architecture increasingly produces buildings out of range

Traditional Methods

- Traditional methods are based on experiments conducted in small compartment (~3 m³)
 - 1. Traditional methods assume **uniform fires** that lead to uniform fire temperatures (?)
- → 2. Traditional methods have been said to be **conservative** (?)

"Problems cannot be solved by the level of awareness that created them"

Attributed to A Einstein

Fire spread in small vs. large room – Extrapolation of Maximum Size

Because all knowledge on fire behaviour came from tests in small rooms, the implicit assumption was to extrapolate the maximum size

The fire travels in large floors

NOTE: The name *Travelling Fires* was incidentally given by Barbara Lane in an email in 2007. Chances are high she does not know this.

I believe in human rights,

therefore:

Break of 5 min

Travelling Fires

Each structural element sees a combination of Near Field and Far Field temperatures as the fire travels

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Figure 2-2.1. Ceiling jet flow beneath an unconfined ceiling.

Conservation of Mass

- burning time for near field

≻Time during which the near field burns at any given fuel location:

$$t_{b} = \frac{m'' \Delta h_{c}}{\dot{Q}''}$$

For typical office buildings, burning time is ~ 20 min

where t_b is the burning time, *m*" is the fuel load density (kg/m²), ΔH_c is the effective heat of combustion and Q" is the heat release rate per unit area (MW/m²)

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Case Study: Generic Multi-Storey Concrete Structure

Structural Results – Rebar Temperature

Family of fires – not just one fire cast in stone

Effect of fire size and rebar depth

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Comparison with Traditional Methods

Figure 2.17: Comparison of bay temperatures calculated using the base case, the standard fire, and two Eurocode parametric temperature-time curves.

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Max Rebar Temperatures vs. Fire Size

Law et al, *Engineering Structures* 2011

Max Deflection vs. Fire Size

Law et al, Engineering Structures 2011

Conclusions

- In large compartments, a post flashover fire is not likely to occur, but a travelling fire
- Provides range of possible fire dynamics
- Novel framework complementing traditional methods
- Travelling fires give more onerous conditions for the structure
- Strengthens collaboration between fire and structural fire engineers

Sponsors:

ARUP

The Leverhulme Trust

J Stern-Gottfried **A Law A Jonsdottir M** Gillie **J** Torero

Thanks

Stern-Gottfried and Rein, *Fire Safety Journal*, 2012

Stern-Gottfried, PhD Thesis, 2011

Law et al, Engineering Structures 2011

Jonsdottir et al, Fire Risk Management 2009

Rein et al, Interflam 2007, London

Springer.

Editor in Chief: Guillermo Rein

Associate Editors:

Luke Bisby Samuel Manzello Erica Kuligowski John Watts Kathleen Almand Nicholas Dembsey Craig Beyler John Hall **Interdisciplinary journal** spanning the whole range of fire safety science and engineering.

Fire Technology

Peer reviewed journal of the **NFPA** by

~1 or 2 orders of magnitude **larger audience** than any other fire journal. Specially read by industry.

Get the table of contents http://www.springer.com/10694 Current impact factor is low (IF=0.43) but the sooner you **publish with us and cite** it the sooner we will reach IF~1.

Effect of fuel load

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Effect of near field temperature

Figure 2.13: Bay temperature vs. time for near field temperatures between 800 and 1200°C at Bays 2 and 6.

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Travelling Fires

Real fires are observed to travel
WTC Towers 2001
Torre Windsor 2005
Delft Faculty 2008
etc...

- Experimental data (and common sense) indicate fires travel in large compartments
- In larger compartments, the fire does not burn uniformly but burns locally and spreads

Objective of Fire Safety Engineering: protect Lives, Property, Business and Environment

from Torero and Rein, Physical Parameters Affecting Fire Growth, Chapter 3 in: Fire Retardancy of Polymeric Materials, CRC Press 2009

from Torero and Rein, Physical Parameters Affecting Fire Growth, Chapter 3 in: Fire Retardancy of Polymeric Materials, CRC Press 2009