Introduction to Fire Dynamics for Structural Engineers

by Dr Guillermo Rein
Department of
Mechanical Engineering
Imperial College
London

IMPERIAL

Technological Disasters 1900-2000

NOTE: Immediate fatalities as a proxy to overall damage. Disaster defined as >10 fatalities, >100 people affected, state of emergency or call for international assistance.

EM-DAT International Disaster Database, Université catholique de Louvain, Belgium. www.emdat.be
Jocelyn Hofman, Fire Safety Engineering in Coal Mines MSc Dissertation, University of Edinburgh, 2010

Fire Test at BRE commissioned by Arup 2009 $4 \times 4 \times 2.4 \mathrm{~m}$ - small premise in shopping mall

190s

285s

316s

Fire Test in $4 \times 4 \times 2.4$ m enclosure
\sim small premise in shopping mall

Compartment fires

Fire development in a compartment - rate of heat release as a function of time

(a) growth period
(b) fully developed fire
(c) decay period

Discipline Boundaries

Boundary between fire and structures is the intersection of the two sets

Lame Substitution of the $1^{\text {st }}$ kind

When structural engineers are entirely replaced by pseudo-science. It still survives in many standards

Lame Substitution of the $2^{\text {nd }}$ kind

When fire engineers are entirely replaced by pseudo-science. It is mainstream in structural engineering.

Lame Substitution of the $3^{\text {rd }}$ kind

When both fire and structural engineers are simultaneously replaced by pseudo-science.
Any similarities with reality is a mere coincidence.

Objective of this talk

Provide an introduction to fire dynamics to the audience, a majority of structural engineers working on fire and structures

This introduction will make emphasis on the mechanism governing fire growth in compartments

Then, two most fundamental flaws of current design fire methodologies will be reviewed

Textbooks

Introduction to fire Dynamics by Dougal Drysdale, $3{ }^{\text {rd }}$ Edition, Wiley 2011

The SFPE Handbook of Fire
 protection Engineering, 4th Edition, 2009

Principles of Fire Behavior by James G. Quintiere

Ignition - fuel exposed to heat

> Upon receiving sufficient heat, a solid/liquid fuel starts to decompose giving off gasses: pyrolysis
> Ignition takes place when a flammable mixture of fuel vapours is formed over the fuel surface

Pyrolysis video

Pyrolysis of clear PMMA slab 25 mm thick
htttp://www.youtube.com/watch?v=UusEwufhWaw

Time to ignition - Thick Samples

Experimental data for PMMA (polymer) from the literature. Thick samples

Flammability \sim material property

Source: Quintiere, J.G., Principles of Fire Behavior, Delmar Publishers, New York, 1998.

Flame Spread Rate

$$
S \propto \frac{\delta_{s}}{t_{i g}}
$$

Flame spread is inversely proportional to the time to ignition

Thick fuel

$$
\begin{aligned}
t_{i g} & =\frac{\pi}{4} k \rho c\left(\frac{T_{i g}-T_{o}}{\dot{q}_{e}^{\prime \prime}}\right)^{2} \\
t_{i g} & =\tau \rho c \frac{\left(T_{i g}-T_{0}\right)}{\dot{q}_{e}^{\prime \prime}}
\end{aligned}
$$

Flame Spread vs. Angle

Test conducted by Aled Beswick BEng 2009

Flame Spread vs. Angle

Rate of flame spread over strips of thin samples of balsa wood at different angles of $15,90,-15$ and 0°.
Test conducted by Aled Beswick BEng 2009
http://www.youtube.com/watch?v=V8gcFX9jLGc

Flame and Fire Power

Effect of heat Release Rate on Flame height (video WPI)

http://www.youtube.com/watch?v=7B9-bZCCUxU\&feature=player_embedded

Fire Power - Heat Release Rate

$>$ Heat release rate $(H R R)$ is the power of the fire (energy release per unit time)

$$
\dot{Q}=\Delta h_{c} \dot{m}=\Delta h_{c} \dot{m}^{\prime \prime} A
$$

Note: the heat of reaction is negative for exothermic reaction, but in combustion this is always the case, so we will drop the sign from the heat of combustion for the sake of simplicity

Burning rate (per unit area)

Table 9.3 Asymptotic burning rates (from various sources)

	$\mathrm{g} / \mathrm{m}^{2} \mathrm{~s}$
Polyvinyl chloride (granular)	16
. Methanol...	21...
Flexible polyurethane (foams)	21-27:
Polymethymethacrylate	28
Polystyrene (granular)	
	$40^{\circ} \cdot$
Gasolene	48-62
JP-4	52-70
Heptane	66
Hexane	70-80
Butane	80
Benzene	98
Liquid natural gas	80-100
Liquid propane	100-130

from Quintiere, Principles of Fire Behaviour
In general, it is a material and scenario dependant. In open fires it can be approximated as a material property only.

$$
\dot{m}^{\prime \prime}=\frac{\dot{q}^{\prime \prime}}{\Delta h_{p}}
$$

Heat of Combustion

Table 1.13 Heats of combustion ${ }^{a}$ of selected fuels at $25^{\circ} \mathrm{C}(298 \mathrm{~K})$

It is a material property only

> if the combustion
> efficiently is also taken into account. Efficiency is scenario dependant.

[^0] combustion.
from Introduction to fire Dynamics, Drysdale, Wiley

Flame spread

On a uniform layer of fuel, isotropic spread gives a circular pattern

$$
\begin{aligned}
& \frac{d R}{d t}=S=\text { flame spread rate } \\
& \text { if } S=\text { constant } \Rightarrow R=S t \\
& A=\pi R^{2}=\pi(S t)^{2} \\
& \dot{Q}=\Delta h_{c} \dot{m}^{\prime \prime} A=\pi \Delta h_{c} \dot{m}^{\prime \prime} S^{2} t^{2} \\
& \sim \text { material property in well ventilated fires }
\end{aligned}
$$

$\dot{Q}=\pi \Delta h_{c} \dot{m}^{\prime \prime} S^{2} t^{2}=\alpha t^{2}$
when flame spread is \sim constant, the fire grows as t^{2}

t-square growth fires

Tabulated fire-growths of different fire types

$$
\dot{Q}=\alpha t^{2}
$$

Table 9.6 Parameters used for ' t-squared fires' (Evans, 1995)

Description	Typical scenario	α_{f} $\mathrm{~kW} / \mathrm{s}^{2}$
Slow	Densely packed paper products ${ }^{a}$ MediumTraditional mattress/boxspring ${ }^{e}$ Traditional armchair	0.00293
Fast	PU mattress (horizontal) ${ }^{a}$	0.01172
Ultrafast	PE pallets, stacked 1 m high High-rack storage	0.0469
	PE rigid foam stacked 5 m high	

${ }^{a}$ National Fire Protection Association (1993a).

Burn-out

At some point:

location running out of fuel

Later on:

$$
t_{\text {out }}=\frac{H \rho}{\dot{m}^{\prime \prime}} \quad \text { burn-out }
$$

Sofa fire

from NIST http://fire.nist.gov/fire/fires

Examples of HRR

from NIST http://fire.nist.gov/fire/fires

190s

285s

316s

bre
ARUP

Free burning vs. Confined burning

Smoke and walls radiate downwards to fuel items in the compartments

Sudden and generalized ignition (flashover)

What is flashover?

Sudden period of very rapid growth caused by generalized ignition of fuel items in the room

Some indicators:

- Average smoke temperature of $\sim 500-600{ }^{\circ} \mathrm{C}$
- Heat flux $\sim 20 \mathrm{~kW} / \mathrm{m}^{2}$ at floor level
- Flames out of openings (ventilation controlled)

NOTE: These three are not definitions but indicators only
NOTE: Average temperate of $600^{\circ} \mathrm{C}$ implies that the room space is occupied mostly by interment flames

I believe in human rights,

therefore:

Break of 5 min

Discipline Boundaries

$\mathbf{G I} \Rightarrow \mathbf{G O}$

$>$ When problems arise at the interface between fire and structures, most consequences travel downstream, ie. towards the structural engineer
$>$ If the input is incomplete or wrong, the subsequent analysis is flawed and cannot be trusted
$>$ Fire is the input (boundary condition) to subsequent structures analysis.

Artist

Structural engineer

Mechanical engineer

Views of fire

Forester

Rest of the world

WTC 2 - East face

Ancient Design Fires Traditional Design Fires

> Standard Fire ~ 1880 (on paper in ~ 1912)
> Swedish Curves ~1972
> Eurocode Parametric Curve ~1995

Blind extrapolation from limited experience

 blind extrapolation

Fire in Small compartment

Fire in Normal compartment

Fire in Large compartment

Fire in Multistorey compartment

Scaling effects

Design Fires

"The Titanic complied with all codes.
Lawyers can make any device legal, only engineers can make them safe"

Prof VM Brannigan

University of Maryland

What follows is a review of the current state of the art on design fires in fire and structures.

I believe in human rights,

therefore:

Break of 5 min

Traditional Methods

$>$ Traditional methods are based on experiments conducted in small compartment ($\sim 3 \mathrm{~m}^{3}$)

\longrightarrow 1. Traditional methods assume uniform fires that lead to uniform fire temperatures (?)
2. Traditional methods have been said to be conservative (?)

Fuel Load

$>$ Mixed livingroom/office space
$>$ Fuel load is $\sim 32 \mathrm{~kg} / \mathrm{m}^{2}$
$>$ Set-up Design for robustness and high repeatability

Average Compartment Temperature

Compartment Temperature

Fig. 6. Comparisons of the measured temperature distributions against the associated normal distributions at 4 min intervals after flashover for Dalmarnock Test One.

Stern-Gottfried et al., Fire Safety Journal 45, pp. 249-261, 2010. doi:10.1016/j.firesaf.2010.03.007

Cardington Results

Cardington 5

Conclusions on homogeneity

$>$ Decently instrumented fire tests show considerable nonuniformity in the temperature field
> When exposed to 80\% percentile temperatures instead of average, the time to failure decreases to 15% in Protected Steel and to 22% for Concrete.
> One single temperature for a whole compartment is not correct nor safe assumption
$>$ Heterogeneity has significant impact on structural fire response
$>$ Fire tests with crude spatial resolution have led to erroneous conclusions

Limitations

For example, limitations according Eurocode:

If Near rectangular enclosures
\& Floor areas < $\mathbf{5 0 0} \mathbf{~ m}^{\mathbf{2}}$
\& Heights $<4 \mathrm{~m}$
\& No ceilings openings
\mathscr{H} Only medium thermal-inertia lining

$<500 \mathrm{~m}^{2}$ floor? < 4 m high?

Excel, London

Proposed WTC Transit Hub

Insulating lining?

London Bridge Tower

No ceiling opening?

3000 compartments

We surveyed most of the enclosures in the Kings Buildings campus of the University of Edinburgh.

- Buildings from 1850-1990: ~66\% of volume within limitations
- Buildings from 2000: $\sim 8 \%$ of volume within limitations (figure)

Modern architecture increasingly produces buildings out of range

Traditional Methods

$>$ Traditional methods are based on experiments conducted in small compartment $\left(\sim 3 \mathrm{~m}^{3}\right)$

1. Traditional methods assume uniform fires that lead to uniform fire temperatures (?)
\longrightarrow 2. Traditional methods have been said to be conservative (?)

"Problems cannot be solved by the level of awareness that created them"

Attributed to A Einstein

Fire spread in small vs. large room - Extrapolation of Maximum Size

Because all knowledge on fire behaviour came from tests in small rooms, the implicit assumption was to extrapolate the maximum size

The fire travels in large floors

$\begin{gathered}\text { Condition for travelling } \\ \text { behaviour: }\end{gathered} t_{\text {spread }}=\frac{L}{S}>t_{\text {out }}=\frac{H \rho}{\dot{m}^{\prime \prime}}$

NOTE: The name Travelling Fires was incidentally given by Barbara Lane in an email in 2007. Chances are high she does not know this.

I believe in human rights,

therefore:

Break of 5 min

Traveling Fires

Travelling Fires

> Each structural element sees a combination of Near Field and Far Field temperatures as the fire travels

Far Field = Ceiling Jet - but now it travels!

Figure 2-2.1. Ceiling jet flow beneath an unconfined ceiling.

Conservation of Mass
 - burning time for near field

$>$ Time during which the near field burns at any given fuel location:

$$
t_{b}=\frac{m^{\prime \prime} \Delta h_{c}}{\dot{Q^{\prime \prime}}}
$$

H For typical office buildings, burning time is $\sim 20 \mathrm{~min}$
where t_{b} is the burning time, m " is the fuel load density $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$, $\Delta \mathrm{H}_{\mathrm{c}}$ is the effective heat of combustion and Q " is the heat release rate per unit area (MW/m²)

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Case Study:
 Generic Multi-Storey Concrete Structure

Structural Results - Rebar Temperature

[^1]
Family of fires
 - not just one fire cast in stone

Effect of fire size and rebar depth

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Comparison with Traditional Methods

Figure 2.17: Comparison of bay temperatures calculated using the base case, the standard fire, and two Eurocode parametric temperature-time curves.

Max Rebar Temperatures vs. Fire Size

Max Deflection vs. Fire Size

Law et al, Engineering Structures 2011

Conclusions

> In large compartments, a post flashover fire is not likely to occur, but a travelling fire
$>$ Provides range of possible fire dynamics
$>$ Novel framework complementing traditional methods
$>$ Travelling fires give more onerous conditions for the structure
> Strengthens collaboration between fire and structural fire engineers

Editor in Chief:
Guillermo Rein
Associate Editors:
Luke Bisby
Samuel Manzello
Erica Kuligowski John Watts
Kathleen Almand
Nicholas Dembsey Craig Beyler John Hall

Get the table of contents http://www.springer.com/10694

Fire Technology

Peer reviewed journal of the NFPA by Springer.

Interdisciplinary journal spanning the whole range of fire safety science and engineering.
~ 1 or 2 orders of magnitude larger audience than any other fire journal. Specially read by industry.

Current impact factor is low ($\mathrm{IF}=0.43$) but the sooner you publish with us and cite it the sooner we will reach $\mathrm{IF} \sim 1$.

Effect of fuel load

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Effect of near field temperature

Figure 2.13: Bay temperature vs. time for near field temperatures between 800 and $1200^{\circ} \mathrm{C}$ at Bays 2 and 6 .

Stern-Gottfried and Rein, Fire Safety Journal, 2012

Travelling Fires

> Real fires are observed to travel H WTC Towers 2001
\& Torre Windsor 2005
\& Delft Faculty 2008
 H etc...
$>$ Experimental data (and common sense) indicate fires travel in large compartments
$>$ In larger compartments, the fire does not burn uniformly but burns locally and spreads

Objective of Fire Safety Engineering: protect Lives, Property, Business and Environment

Objective of Fire Safety Engineering:

 protect Lives, Property, Business and Environment

[^0]: ${ }^{a}$ The initial states of the fuels correspond to their natural states at normal temperature and pressure $\left(298^{\circ} \mathrm{C}\right.$ and 1 atm pressure). All products are taken to be in their gaseous state-thus these are the net heats of

[^1]: Law et al, Engineering Structures 2011

