2.9 Robustness of car parks under localised fire: Tests on joints subject to thermal and mechanical loading

Haremza C., Portugal

ROBUSTFIRE PROJECT

Robustness of car parks under localised fire:
Tests on joints subject to thermal and mechanical loading

Cécile Haremza, Aldina Santiago
University of Coimbra, Portugal

Action TU0904 Meeting: Barcelona Workshop, WG2, 5 July 2010

PURPOSE and SCOPE OF THE PROJECT

- **EUROPEAN RFCS ROBUSTFIRE PROJECT**
 - New design criteria of car parks with sufficient robustness under localised fire
 - Practical design guidelines

- **4 MAIN OBJECTIVES**
 - State of the art (behaviour of joints and columns under fire; design of open car parks subject to a localised fire)
 - Behaviour study of the frame elements directly affected by the localised fire (Experimental tests and numerical models)
 - Numerical models and simplified analytical models of the fire response of critical structural components (Columns, connections, composite beams)
 - Robustness assessment approach for steel composite open car parks under localised fire

OVERVIEW OF THE 7 EXPERIMENTAL TESTS ON JOINTS

- **7 EXPERIMENTAL TESTS**
 - 1 REFERENCE TEST at ambient temperature
 - 5 TESTS at high temperatures (500°C and 700°C)
 - 1 DEMONSTRATION TEST under fire (increase of temperature up to the failure of the joint)

- **OBJECTIVE**
 - To observe the combiNeD bending momEnt and axial LOADs in the heated joint when calenary action developed in the frame after the loss of the column

OVERVIEW OF THE 7 EXPERIMENTAL TESTS ON JOINTS

<table>
<thead>
<tr>
<th>STUDY CASES</th>
<th>Axial Restrained</th>
<th>Temperature</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST n°1 (REFERENCE TEST)</td>
<td>Spring</td>
<td>20°C</td>
<td>Joint M-N curve</td>
</tr>
<tr>
<td>TEST n°2/TEST n°3</td>
<td>X</td>
<td>500-700°C</td>
<td>Joint properties</td>
</tr>
<tr>
<td>TEST n°4/TEST n°5</td>
<td>Total</td>
<td>500-700°C</td>
<td>Joint M-N curves</td>
</tr>
<tr>
<td>TEST n°6</td>
<td>Spring</td>
<td>700°C</td>
<td></td>
</tr>
<tr>
<td>TEST n°7 (DEMONSTRATION TEST)</td>
<td>Spring</td>
<td>>700°C</td>
<td></td>
</tr>
</tbody>
</table>

- **4 STEPS**
 - 1: Initial load
 - 2: Localised fire
 - 3: Loss of the column
 - 4: Max load capacity

TESTING ARRANGEMENT

- **ELEVATION View**

- Car park beam span ≥ 10 000 mm

Steel column: S460
Joint beam: J20
Concrete: C25/30
Nominal section: 111
Car Load: 25kN/m
STEP 1: Initial loads

- **APPLICATION OF THE INITIAL VERTICAL LOAD**
 - Applied load: 223 kN
 - Stroked: 62 mm

STEP 2: Localised Fire

- **ELEVATION View (Tests at high temperatures – Ceramic pad heating elements)**
 - Heated zone

STEP 3: Loss of the column

STEP 4: Max load capacity

SIMPLIFIED SUB-STRUCTURE MODELLING

- **Connector elements**
- **Concrete slab**

<table>
<thead>
<tr>
<th>Check of the Actuator</th>
<th>ABAQUS</th>
<th>Actuator cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total horizontal displacement of the beam (tension + compression)</td>
<td>15 mm</td>
<td>168 mm</td>
</tr>
<tr>
<td>Horizontal reaction of the beam – Compression (kN)</td>
<td>14 kN</td>
<td>435 kN</td>
</tr>
<tr>
<td>Horizontal reaction of the beam – Tension (kN)</td>
<td>743 kN</td>
<td>933 kN</td>
</tr>
</tbody>
</table>

Check of the Hydraulic Jack B

- **ABAQUS**
- **Hydraulic jack cap.**

- **Vertical force applied**
 - 320 kN
 - 1000 kN
 - OK

- **Vertical displacement**
 - 108 mm
 - 280 mm
 - OK

Check of the Load Cell C

- **ABAQUS**
- **Load cell cap.**

- **Axial force in the column (kN)**
 - 477 kN
 - 1000 kN
 - OK

NUMERICAL MODEL OF THE BOLTED CONNECTION

- **3D solid and contact elements**
 - **IN DEVELOPMENT**