

Ohybová tuhost sendvičových panelů

Kamila Cábová

Seznámení s podklady

pro analytický model ohybové tuhosti

sendvičových panelů

RFCS 751583

Steel cladding systems for stabilization of steel buildings in fire

Obsah přednášky

- Úvod
- Experimenty
- Numerické modely
- Analytický model
 - Validace a doporučení
- Shrnutí

U	V	0	d

Interakce mezi pláštěm a ocelovou konstrukcí je ovlivněna tuhostí a únosností:

- spojů / spojovacích prostředků
- o sendvičových panelů

Přednáška se zabývá

tuhostí a únosností sendvičových panelů v ohybu při požáru.

Experimenty v ohybu

5

Zkušební sestava

Rozsah zkoušek

		Test configuratio	Specimen size		
	Panel	Panel thickness (mm)	Temperature (°C)	1200x2500 (mm)	1200x4000 (mm)
			20	1 test	0
		100	300	1 test	0
		100	450	1 test	0
			600	1 test	0
	MV		20	1 test	0
			200	1 test	0
		230	300	1 test	1 test
			450	1 test	0
			600	1 test	0
	Panel	Panel thickness (mm)	Temperature (°C)	1000x2500 (mm)	1000x4000 (mm)
			20	1 test	0
		100	200	1 test	0
PIF		100	250	1 test	0
	DID		300	1 test	0
	ГІК		20	1 test	0
		160	150	1 test	0
		100	200	1 test	0
			300	0	1 test

Zahřívání panelů

- Mannings HTC 70kVA
- Keramické dečky

Rozmístění hřebíků a keramických deček

Měření teploty

V PRAZE

Měření deformace

ČVUT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Panel s jádrem z minerální vaty

ČVUT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Panel tloušťky 230 mm při 600°C

Panel s jádrem z minerální vaty

Tvary porušení pro minerální vatu

Panel tl.230 mm, délky 2,5 m, při 20°C

Panel tl.230 mm, délky 2,5 m, při 600°C

Tvary porušení pro minerální vatu

Panel tl.100 mm, délky 2,5 m, při 20°C

Panel tl.100 mm, délky 2,5 m, při 600°C

Panel s jádrem z PIR

Panel s jádrem z PIR

0

Panel tloušťky 100 mm, délky 2,5 m

Tvary porušení pro PIR

Panel tl.100 mm, délky 2,5 m, při 20°C

Panel tl.100 mm, délky 2,5 m, při 300°C

Výsledky zkoušek

Т	Test configuration		Resistance F _{max} (kN) Def		Deflection	Deflection w _{Fmax} (mm)		Bending stiffness k (kN/mm	
Panel	Panel thickness (mm)	Temperature (°C)	1200x2500 (mm)	1200x4000 (mm)	1200x2500 (mm)	1200x4000 (mm)	1200x2500 (mm)	1200 x4000 (mm)	
	100	20 300 450	10,7 6,4 4,5		11,89 14,65 14,17		0,90 0,44 0,32		
MV	230	600 20 200	2,5 16,1		10,48 12,71 16.97		0,24 1,27		
		<u>300</u> 450	15,9 13,5	9,5	13,07 16,02	16,40	0,97 1,22 0,84	0,58	
Panel	Panel thickness (mm)	600 Temperature (°C)	10,6 1000x2500 (mm)	1000x4000 (mm)	24,01 1000x2500 (mm)	1000x4000 (mm)	0,44 1000x2500 (mm)	1000x4000 (mm)	
	100	20 200 250 300	28,0 15,9 10,0 10,8		25,99 33,62 32,38 35,72		1,08 0,47 0,31 0,30		
PIK	160	20 150 200	42,6 26,4 24,2		25,89 21,63 27,33		1,65 1,22 0,89		
		300		11,3		73,76		0,15	

Numerický model

Abaqus 0

- Teplotní analýza 0
- Analýza mechanického chování 0

Teplotní analýza

Panel s minerální vatou tl. 230 mm při 600°C

Teplotní analýza

- Zjednodušení použití rovného spodního plechu
- Uložení

Ortotropní materiál

- Panel s PIR tl. 160 mm při 20°C
- Napětí Von Mises pro jádro
- Mez kluzu materiálu jádra: 0,123 MPa

- Panel s PIR tl. 160 mm při 20°C
- Napětí Von Mises pro plášť
- Mez kluzu ocelového plechu: 280 MPa

- Panel s PIR tl. 160 mm při 20°C
- Porovnání deformovaného tvaru

Tabulka E.10.2 normy EN 14509:2013

Vysvětlivky:

- Modul pružnosti neohřívaného a ohřívaného plechu
- $E_{F1} = E$ $E_{F2} = Ek_{F,\theta}$ (redukce modulu pružnosti pomocí součinitele dle EN 1993-1-2)
- Modul pružnosti jádra
- G_{C}
- Průřezové plochy vnějšího a vnitřního plechu $A_{F1} = b_1 t_{cor,F1}$ (b₁ je délka střednice průřezu vnějšího plechu) $A_{F2} = b t_{cor,F2}$

 $t_{cor,F1} = t_{F1} - 0.04 \text{ mm} \dots \text{ pro vnější plech}$ $t_{cor,F2} = t_{F2} - 0.04 \text{ mm} \dots \text{ pro vnitřní plech}$

Vysvětlivky:

Vzdálenost těžišť obou plechů

$$e = t_c + \frac{t_{F2}}{2} + x_{F1} \approx D + x_{F1}$$

kde x_{F1} je poloha těžiště vnějšího plechu dle obrázku

Vysvětlivky:

• Ohybová tuhost vnějšího plechu

 $B_{F1} = E_{F1}I_{F1}$

kde I_{F1} je moment setrvačnosti vnějšího plechu k vlastní ose

 Ohybová tuhost sendvičového panelu s profilovanými stranami (minerální vata)

$$S = \frac{384B_s}{5L^3\left(1+3.2k\right)}$$

kde

$$k = \frac{3B_s}{L^2 G_C A_C} = \frac{3B_s}{L^2 G_C bD}$$

$$B_{S} = e^{2} \frac{E_{F1}A_{F1} \cdot E_{F2}A_{F2}}{E_{F1}A_{F1} + E_{F2}A_{F2}}$$

Tabulka E.10.2 normy EN 14509:2013

Redukce modulu pružnosti pomocí k_{E,θ} není dostatečná

 Tuhost při zvýšené teplotě je násobkem tuhosti za běžné teploty s redukčním součinitelem pro mez úměrnosti

$$k_{\theta} = k_{20} \cdot k_{p,\theta}$$

Porovnání tuhosti s MKP modelem

	Т	D	Coro	В	L	k _{theory}	k _{FEM}	k _{theory} /
Case	[⁰ C]	[mm]	Core	[mm]	[mm]	[kN/mm]	[kN/mm]	k _{FFM}
MW100-20	20	100	MW	1200	2350	1.08	0.82	1.32
MW100-300	300	100	MW	1200	2350	0.66	0.53	1.25
MW100-450	450	100	MW	1200	2350	0.42	0.37	1.14
MW100-600	600	100	MW	1200	2350	0.19	0.25	0.78
MW230-20	20	230	MW	1200	2350	2.96	1.87	1.58
MW230-200	200	230	MW	1200	2350	2.39	1.83	1.31
MW230-300-1	300	230	MW	1200	2350	1.81	1.68	1.08
MW230-300-2	300	230	MW	1200	3850	0.89	-	-
MW230-450	450	230	MW	1200	2350	1.15	1.17	0.99
MW230-600	600	230	MW	1200	2350	0.53	1.06	0.50
							Average	1.10
PIR100-20	20	100	PIR	1000	2350	0.84	1.21	0.70
PIR100-200	200	100	PIR	1000	2350	0.68	0.94	0.72
PIR100-250	250	100	PIR	1000	2350	0.60	0.86	0.70
PIR100-300	300	100	PIR	1000	2350	0.52	0.76	0.68
PIR160-20	20	160	PIR	1000	2350	1.38	1.87	0.74
PIR160-150	150	160	PIR	1000	2350	1.25	1.66	0.75
PIR160-200	200	160	PIR	1000	2350	1.12	1.24	0.90
PIR160-300	300	160	PIR	1000	3850	0.39	_	-
							Average	074

Porovnání tuhostí s MKP modelem graficky

Porovnání tuhosti s experimenty graficky

Deformace od teploty

ČVUT

Shrnutí

- 18 zkoušek sendvičových panelů v ohybu
- MKP modely
- Analytický model pro výpočet ohybové tuhosti

doporučeno

$$k_{\theta} = k_{20} \cdot k_{p,\theta}$$

STABFI

Děkuji za pozornost

Kamila Cábová

kamila.cabova@fsv.cvut.cz

