

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised Fire, Dissemination

Stanovení teploty svislých prvků vystavených lokálnímu požáru

Projekt č. 754072

Experimenty a modely lokálního požáru

Motivace

- Seznámit s výsledky
 - Experimentů
 - Modelování
 - Dynamikou plynů
 - Analytickými modely

v projektu LOCAFI

Obsah prezentace

- Úvod
- Experimenty
- FCD model
 - Validace
 - Nomogramy radiace teplotního pole
- Analytický model
 - Obecný a zjednodušený
 - Validace

Shrnutí

Úvod

Modelování požáru

Úvod

Lokální požár

Příloha C v EN1991-1-2:2005

Plameny **dosahují** ke stropu

Sloup vystavený sálání lokálního požáru

Plameny nedosahují ke stropu

Plameny **dosahují ke stropu**

Sloup vystaven sálání

Y = výška oblasti bez kouře

Zkoušky v Liège Sálání tepla z požáru

24 zkoušek

Měnilo se

- Průměr požáru (0,6 m, 1,0 m, 1,4 m, 1,8 m a 2,2 m)
- Hořlavina (nafta a N-heptan a celulóza)
- Plocha sloupu
- Pro každý průměr a dvě hořlaviny byl připraven
 - Jeden sloup mimo požár
 - Jeden sloup ve středu požáru

Zkoušky v Liège

Zkušební sestava

- Dvě nádrže s heptanem a naftou hořáky se plnily gravitací
- Rychlost rozvoje požáru kontrolována ručně
- Pro zajištění stálého hoření, nádrž chlazena vodou

Zkoušky v Liège

Měření výšky plamene

Průměrná výška plamene *L* je definovaná jako vzdálenost nad zdrojem hoření, kde se **plameny přerušují na polovinu**, přerušování plamenů *I*(z) je definováno časem s a bez plamene. K měření digitální kamera

Rozdíl mezi změřenou a předpovězenou výškou plamene v Heskestad modelu byl +30% a -30%, což odpovídá nejistotám účinnosti hoření a výhřevnosti.

N. Tondini, J.M. Franssen, "Analysis of experimental hydrocarbon localised fires with and without engulfed steel members", Fire Safety Journal 92 (2017), 9-22

Zkoušky v Liège

Měření teploty a plamenů

- Měřilo se do ustáleného stavu teploty a sálání
- Ve sloupu se měřil termočlánky rozvoj teploty

Zkoušky v Liège

Změřené teploty a sálání

Model v EN1991-1-2 dobře předpovídá teplotu plamene $(q_g \ge 500^{\circ}\text{C})$ a oblaku hořících plynů $(q_g < 500^{\circ}\text{C})$

Zkoušky v Ulsteru Sálání na prvky mimo lokální požár

• 58 zkoušek

- Měnilo se
 - Bez stropu 37 a se stropem 21
 - Počet zdrojů (od 1 po 4) a průměr zdroje (průměry 0,7 m a 1,6m)
 - Hořlavina (nafta a kerozin a celulóza)
- Konstrukce 9 m x 9 m sestávala ze tří průřezů sloupů (průřezy *I*, *H a dutý*)
- Průběh HRR měřen kalorimetrem v odtahu
- Délka plamenů měřena kamerou a vyhodnocena pravděpodobnost

Zkoušky v Ulsteru Změřená teplota plamene

Zkoušky potvrdily, že Heskestad model v EN 1991-1-2 přeceňuje teplotu plamene ($q_g \ge 500^{\circ}$ C) a oblaku hořících plynů ($q_g < 500^{\circ}$ C)

Zkoušky v Ulsteru Změřená teplota plamene

Zkoušky potvrdily, že Heskestad model v EN 1991-1-2 přeceňuje teplotu plamene ($q_g \ge 500^{\circ}$ C) a oblaku hořících plynů ($q_g < 500^{\circ}$ C)

Zkoušky v Ulsteru Změřená teplota plamene

Zkoušky potvrdily, že Heskestad model v EN 1991-1-2 přeceňuje teplotu plamene ($q_g \ge 500^{\circ}$ C) a oblaku hořících plynů ($q_g < 500^{\circ}$ C)

Zkoušky v Ulsteru

Výsledky zkoušky O8

- Počet zdrojů 1
- Velikost zdroje 1,6 m
- Palivo kerozin
- Objem 60 1
- Vzdálenost ke zdroji 0 m
- Termočlánky na sloupu po 1.5 m
- Bez stropu

FCD model

FDS (NIST)

Použito

- Model turbulence (Smagorinski, $C_s = 0,1$)
- vlastnosti paliva a vydatnost plamene z literatury
- Počet úhlů sálání 200
- Radiační ztráty 0,2 až 0,5 podle paliva a průměru ohně
- Vítr podle změřených rychlostí
- Velikost sítě hrubá

Příklad změny sálání vlivem nedostatečného počtu radiačních úhlů

D = 1 m, Heptan, bez sloupu - test ULG 06

Průměrný přívod paliva q _{fuel}	0.98 l/min
Měrná hmotnost paliva $ ho$	675 kg/m ³
Vydatnost plamene y _{soot}	0.037
Ideální spalovací teplo ∆H _{c,ideal}	44600 kJ/kg
Spalovací teplo ∆H _c	41200 kJ/kg
RHR stanovené pro $\Delta H_{c,ideal}$	491.7 kW (626.1 kW/m ²)

- Velikost CFD modelu 5,75 m x 3 m x 4 m
- Velikost sítě 5cm x 5 cm x 5 cm
- Rychlost větru 0,22 m/s
- Ztráta radiací 0,45 (SFPE)

D = 1 m, Heptan, bez sloupu - test ULG 06

Výška x teplota

D = 1 m, Heptan, bez sloupu - test ULG 06

Teplota x vzdálenost

D = 1 m, Heptan, bez sloupu - test ULG 06

Sálání x vzdálenost

D = 0,7 m, nafta, strop 3,5 m - zkouška O29

Průměrný přívod paliva q _{fuel}	823 kg/m ³
Měrná hmotnost paliva $ ho$	0,10
Vydatnost plamene y_{soot}	44 000 kJ/kg
Ideální spalovací teplo $\Delta H_{ m c,ideal}$	41 200 kJ/kg
Spalovací teplo ΔH_{c}	491,5 kW (1 277,1 kW/m ²)

- Velikost CFD modelu 7,m x 7,m x 3,5,m
- Velikost sítě 50 mm x 50 mm x 50 mm
- Rychlost větru 0,76 m/s
- Ztráta radiací 0,45 (SFPE)

D = 0,7 m, nafta, strop 3,5 m - zkouška O29

Teplotní pole

- Pro výpočet pomocí zónového modelu (Ozone)
- Interpolací širší rozsah konfigurací požáru
- Možnost verifikace modelů

Studie teplotního pole

Nomogram
 Průměr požáru (m)
 RHR (kW/m²)
 Orientace ozařované plochy (°)

o Pouze radiace

o Emisivita plamene 1,0

Povrch 1 : $\theta = 0^{\circ}$ Povrch 2 : $\theta = 90^{\circ}$

Využití nomogramu

- Charakteristiky lokálního požáru
 - D = 10 m
 - RHR : $500 \text{ kW}/\text{m}^2$
- Pozice
 - -Z = 5m
 - X = 10 m
 - Orientace : 0°
 - Přijatý tepelný tok asi 16 kW/m²

Využití nomogramu

- Charakteristiky lokálního požáru
 - D = 10 m
 - RHR : $500 \text{ kW}/\text{m}^{2\circ}$
 - o Pozice
 - -Z = 5 m
 - X = 10 m
 - Orientace : 90°
 - 0

Přijatý tepelný tok asi 2,4 kW/m²

Analytický model sálání z plamene

Plocha požáru jako kruh Rychlost rozvoje požáru ČSN EN 1991-1-2 Přílohy E Délka plamene L_f ČSN EN 1991-1-2 Přílohy C Sálání z válce nebo kužele s D_{eq} a L_f

$$D_{fire} = \sqrt{\frac{4.S}{\pi}}$$

$$L_f(t) = -1,02 D_{fire} + 0,0148 Q(t)^{0,4}$$

Plamen nedosahuje stropu $L_{\rm f} < H_{\rm stropu}$

$$\theta_f(z) = \min\left(900; 20 + 0.25(0,8Q(t))^{2/3}(z - z_0)^{-5/3}\right)$$
$$z_0 = -1,02 D_{fire} + 0,00524 Q(t)^{0.4}$$

Plamen dosahuje stropu $L_{\rm f} > H_{\rm stropu}$

 $\theta_f(z) = \min\left(900; 20 + 0.25(0.8Q(t))^{2/3}(z - z_0)^{-5/3}\right)$ $z_0 = -1.02D_{fire} + 0.00524 Q(t)^{0.4}$

 $\dot{h}(r)$ počítáno modelem Hasemi $\theta_f(r)$ splňuje $\dot{h}(r) = \sigma \left(\left(\theta_f(r) + 273 \right)^4 - 293^4 \right) + 35 \left(\theta_f(r) - 20 \right)$

 $L_h(t) = H(2.9Q(t)_H^{0.33} - 1)$

Radiační tepelný tok

Vyzářený povrchem dA_1 a přijatý povrchem dA_2

$$\emptyset_{dA_1 \to dA_2} = \alpha_2 \varepsilon_1 \sigma. T^4 \frac{\cos(\theta_1)\cos(\theta_2)dA_1 dA_2}{\pi r^2}$$

- Emisivita vyzařujícího povrchu ε_1) rovna 1,0
- Absorpční schopnost α_2 ozařovaného povrchu
- Kirchoffův zákon

absorpční schopnost (α) = emisivita (ϵ)

- Pro ocel, $\varepsilon = \alpha = 0,7$

Svislé části konstrukce

Zastínění

Uvažuje se konvexní délka obvodu Pro I- nebo H-průřez s příloha GČSN EN 1991-1-2

Obecný model Numerická integrace

$$F_{d1-2} \simeq \frac{-1}{\pi} \sum_{i} \frac{(\vec{S}.\vec{n_1})(\vec{S}.\vec{n_2})}{S^4} \Delta A_i$$

- Po krocích je počítána radiační výměna tepla
- Pro reálné aplikace program
- Zahrnuje nerovnoměrné radiační toky na obvod průřezu

Zjednodušený model

Součinitel sálání nekonečně malé plochy na válec

Zjednodušený model

Součinitel sálání nekonečně malé plochy na válec

$$F_{dA_1 \to A_2} = \frac{H}{2} \left(\frac{H^2 + R_2^2 + 1}{\sqrt{(H^2 + R_2^2 + 1)^2 - 4R_2^2}} - \frac{H^2 + R_1^2 + 1}{\sqrt{(H^2 + R_1^2 + 1)^2 - 4R_1^2}} \right)$$
$$H = h/l$$
$$R = r/l$$

Platí pouze pokud $l > r_2$

Rozdělení požáru po výšce kužele/válce na prstence

Plamen nedosahuje stropu
 $L_f < H_{stropu}$ nebo strop neníPlamen dosahuje stropu
 $L_f > H_{stropu}$ Prstenec b_i s konstantní
teplotou $\theta(z_i)$ Prstenec b_i s konstantní teplotou $\theta(r_i)$ Image: stropu model in the stropu

Příspěvek prstence je malý, pokud není prvek umístěn v prstenci

Analytický model

Rozdělení požáru po výšce kužele/válce na prstence

Analytický model

Příspěvek prstenců zanedbán – zanedbán tepelný tok nad ohněm

Rozdělení požáru po výšce kužele/válce na prstence

Průsečík nevznikne Plocha 1 Plocha 4 Průsečík

Pokud ozařovaná plocha protíná válec vztahy neplatí

Analytický model

4.3. Zjednodušený model

Rozdělení požáru po výšce kužele a válce na prstence (Přizpůsobení 2)

V tomto případě se počáteční válec transformoval na upravený válec ve viditelné zóně.

Rozdělení požáruAnalytický modelpo výšce kužele/válce na prstence

Část prstenců, která je zakryta válcem umístěným nad, se redukuje.

Omezení modelu

- Doporučená šířka válce je 500 mm
- Pro prvky umístěné pod stropem započítán konvekční tepelný tok Hasemi modelem
- Celkový přijatý tepelný tok omezen na 100 kW/m²
- o Teplota prvku na základě tepelné bilance

 $\dot{h}_{tot} = min(\dot{h}_{rad_section} + \dot{h}_{conv}; 100000) \quad [W.m^{-2}]$

$$\rho C_p(T) \frac{dT}{dt} = \frac{A_m}{V} \Big[\dot{h}_{z_j} + \alpha_c (20 - \theta) + \varepsilon \big(\sigma (293^4 - (\theta + 273)^4) \big) \Big] \quad [W.m^{-2}]$$

Pro prut

 $\begin{array}{ll} \rho & \text{hustota [kg/m^3]} \\ C_p & \text{měrná tepelná kapacita [J.kg^{-1}.K^{-1}]} \\ A_m/V & \text{součinitel průřezu [m^{-1}]} \end{array}$

Validace analytického modelu Validace na zkouškách v Liege Verifikace na FDS modelu

- Měřící bod umístěn 3,75 m od zdroje požáru ve výšce 1,75 m Ο
- Orientace kolmo na osu požárního měřiče Ο

					[_zm/m_z] 15	
Průměr	Experiment průměrná hodnota	Zkouška č.	Válcový požár	Kónický požár	e heat flu	
[m]	[kW/m ²]	[-]	$[kW/m^2]$	$[kW/m^2]$	iativ	
0.60	0.31	1 to 4	1.20	0.74	Radi	
1.00	0.73	5 to 8	3.23	1.95	— 5 -	
1.40	1.36	9 to 14	6.19	3.67 _	>	
1.80	2.12	15 to 18	9.95	5.78		
2.20	3.39	19 to 22	14.55	8.30	0 -	
						-

Validace na zkouškách v Ulsteru Verifikace na FDS modelu

Validace na zkouškách v Ulsteru Verifikace na FDS modelu

1 zdroj D = 0,7 m Měření 0,5/1,8 m

G

1.8 m

Pozic	e měřiče	ěřiče Modely			
Výška	Vzdálen.	Exp.	FDS	Válcový	Kuželový
m	m	kW/m ²	kW/m ²	kW/m ²	kW/m ²
1,0	<u>0,5</u>	30,6	28,5	74,0	39,0
1,0	<u>1,8</u>	4,2	3,8	10,8	6,0
2,0	<u>0,5</u>	6,2	11,2	22,0	5,9
2,0	<u>1,8</u>	2,3	2,6	6,7	3,3

Validace na zkouškách v Ulsteru Verifikace na FDS modelu

1 zdroj D = 0.7 m Měření <u>1.0/1.6</u> m

Pozice měřiče			Modely			
Výška	Vzdál.	Exp.	FDS	Válcový	Kuželový	
m	m	kW/m ²	kW/m ²	kW/m ²	kW/m ²	
1.0	<u>1.0</u>	13.8	12.9	33.2	17.9	
1.0	<u>1.6</u>	5.9	5.5	15.5	8.5	
2.0	<u>1.0</u>	4.5	5.9	14.1	5.5	
2.0	<u>1.6</u>	3.0	3.7	8.8	4.1	

Validace na zkouškách v Ulsteru Verifikace na FDS modelu

Měření <u>1.0</u> m

Pozice	e měřiče		Model		
Výška	Vzdál.	Exp.	FDS	Kuželový	
m	m	kW/m ²	kW/m²	kW/m²	kW/m²
1.0	<u>1.0</u>	31.0	26.6	66.3	37.4
1.0	<u>1.0</u>	24.3	21.6	62.0	34.6
2.0	1.0	15.0	17.7	40.9	16.2
2.0	1.0	13.0	13.6	38.5	15.9

Validace na zkouškách v Ulsteru Verifikace na FDS modelu

1 zdroj D = 1.6 m Měření <u>1.5</u> m

Pozice	e měřiče				
Výška	Vzdál.	Exp.	FDS	Válcový	Kuželový
m	m	kW/m²	kW/m²	kW/m²	kW/m²
1.0	1.5	37.6	33.6	53.9	38.9
2.0	<u>1.5</u>	26.5	24.5	55.2	29.7

Validace zjednodušeného analytického modelu

Pro velké průměry požáru, LCPP testy z literatury

Shrnutí

- Projekt LOCAFI přináší výpočet teploty sloupu, který je vystaven sálání od lokálního požáru
- Rozložení teploty na obvodu tělesa požáru se uvažuje podle vztahů Přílohy C v EN 1991-1-2:2005
- Radiace se počítá pomocí konfiguračního součinitele v příloze G v EN 1991-1-2:2005
- Zjednodušený model je založen na vztazích pro radiační tepelný tok přijatý nekonečně malým povrchem z válců a prstenců
- Konvekční tepelné toky je třeba vypočítat zvlášť
- Konvekční tepelné toky jsou významné pouze pro prvky konstrukcí, které se nacházejí přímo v plameni nebo na úrovni stropu, viz příloha C normy EN 1991-1-2:2005.

LOCAFI+

Temperature assessment of a vertical member subjected to LOCAlised Fire, Dissemination

Stanovení teploty svislých prvků vystavených lokálnímu požáru

Projekt č. 754072

Děkuji za pozornost