

NUMERICAL STUDY TO STRUCTURAL INTEGRITY OF MULTI-STOREY BULDING UNDER FIRE

Z. Sokol, F. Wald, M. Pultar, M. Beneš, J. Pašek

Czech Technical University in Prague

MCM 2003, Prague

Contents

Experiment in Cardington

- Modelling of Frame
- Model of Joints
- Results from Analysis

Experiment

Hangars at Cardington

Experiment

Fire load in the compartment 40 kg of wood /m²

Structure during the fire test

Analysis of Response of the Building at Fire

- 2D Structural analysis using ANSYS 5.7
- Three steps of the analysis •Application of dead load •Heating to 1000°C •Cooling to 20°C
- Non-linear analysis with
- •Large strain
- •Large deformations
- •Thermal expansion
- •Temperature dependent materialMISO option
- •Plasticity.....plastic beam element BEAM23
- •Reinforced concrete slab.....tension-only element LINK10 (reinforcement)

- - compression-only el. LINK10 (concrete)
- •Shear connectors..... non-linear springs COMBIN39
- •Modelling of joint characteristics.....non-linear springs COMBIN39

Material Model

Analysis of Cardington Frame I

Analysis of Cardington Frame II

Analysed frame

Analysis of Cardington Frame III

Modelling of Joints

Model for FEM Analysis

- deformation of primary beam

Deflections after Fire

Results – Compression Zone of Joint

Results – Compression Zone of Joint

Failure beam flange in compression

Results – compression zone of joint

Failure beam flange in compression

Temperature 20°C

Temperature 50°C

Temperature 100°C

Temperature 150°C

Temperature 200°C

Temperature 250°C

Temperature 300°C

Temperature 350°C

Temperature 400°C

Temperature 450°C

Temperature 500°C

Temperature 550°C

Temperature 600°C

Temperature 650°C

Temperature 700°C

Temperature 750°C

Temperature 800°C

Temperature 850°C

Temperature 900°C

Temperature 950°C

Temperature 1000°C

Temperature 950°C

Temperature 900°C

Temperature 850°C

Temperature 800°C

Temperature 750°C

Temperature 700°C

Temperature 650°C

Temperature 600°C

Conclusions

The Cardington test showed

Thermal distribution in connections

Internal forces in connections

Behaviour of composite slab

474,7°C Temperature distribution on steel

