

TENSILE MEMBRANE ACTION AND ROBUSTNESS OF STRUCTURAL STEEL JOINTS UNDER NATURAL FIRE EC FP5 HPRI – CV 5535

Cardington Fire Test January 16. 2003

David Moore, František Wald, Aldina Santiago BRE Watford, CTU in Prague, Coimbra University

ECCS TC 10, Prague March 13-16, 2003

Contents

- Cardington Laboratory
- Structural Integrity Test
- Preparation
- Temperatures
- Connections
- Composite slab
- Conclusion

Experimental area 48 m x 65 m x 250 m

Timber structure - 6 floor

Concrete structure - 7 floor

A DN

Steel composite structure

Erected 1993

Eight floors Plan area - 945 m² Steel braced frame Connections: beam-column connections: flexible end plates beam-beam connections: fin plates

Typical composite structure

Contenta

- Cardington Laboratory
- Structural Integrity Test
- Preparation
- Temperatures
- Connections
- Composite slab
- Conclusion

Fire experiments

Summary of fire tests

Test	Description	Fire compartment		Loading			
		size, m	area, m ²	Fire	Mech. G + % Q		
1	One beam	8 x 3	24	Gas	30%		
2	One frame	21 x 2,5	53	Gas	30%		
3	Corner comp.	10 x 7	70	45 kgm ⁻²	30%		
4	Corner comp.	9 x 6	54	45 kgm ⁻²	30%		
5	Large comp.	21 x 18	342	40 kgm ⁻²	30%		
6	Office	18 x 9	136	46 kgm ⁻²	30%		
7	Integrity	11 x 7	77	40 kgm ⁻²	56%		

Summary of duration, temp and deformations

Test	Org.	Level	Duration	Temperatures, °C		Deformation, mm	
			(mins).	atmos	steel	maximal	residual
1	BS	7	170	913	875	232	113
2	BS	4	125	820	800	445	265
3	BS	2	75	1020	950	325	425
4	BRE	3	114	1000	903	269	160
5	BRE	3	70		691	557	481
6	BS	2	40	1150	1060	610	-
7	ČVUT	4	55	1108	1088	~1200	925

Test 2 – BS, 1996 – Column shortening

Structural Integrity Test January, 16. 2003

Project team Mr. Martin Beneš Mr. Luis Borges Mrs. Petra Hřebíková Mrs. Magdaléna Chladná Mr. David Jennings Mr. Tom Lennon Dr. David Moore Mrs. Aldina Santiago Prof. Luis S. da Silva Mr. Paul Sims Dr. Zdeněk Sokol Dr. Jan Pašek Mr. Nick Petty Mr. Jiří Svoboda Prof. Frantisek Wald Mr. David White

Research Student, CTU Prague Research Student, University Coimbra Research Student, CTU Prague Research Student, Slovak Technical University, Bratislava Engineering Technician, BRE Watford Supervising Engineer, BRE Watford Project Director, BRE Watford Research Student, University Coimbra Research Group Member, University Coimbra Project Manager, BRE Watford Research Group Member, CTU Prague Research Group Member, CTU Prague Contracted Technicians, BRE Watford Res. Group Member, TMV SS, Prague European Research Group Leader, Prague Project Leader, BRE Watford

Research Project

- **Tensile membrane action**
- and robustness of structural steel joints under natural fire
- EC FP5 HPRI CV 5535 Participanting Institutions Building Research Establishment Czech Technical University in Prague Coimbra University, Technical University, Bratislava

Objectives

- To determine the:-
- Temperatures in elements and joints
- Internal forces in the connections
- Sehaviour of the composite Slab

Contents

- Cardington Laboratory
- Structural Integrity Test
 - Preparation

- Temperatures
- Connections
- Composite slab
- Conclusion

Fire Compartment

Wall

3 layers of gypsum plasterboard (15 mm + 12,5 mm + 15 mm) with K = 0,19 - 0,24 W/mK

Window

9 m x 1,27 m

Protected Members

BRE

Columns External joints 1 m of the primary beam 15 mm of Cafco300 vermiculite-cement spray K = 0,078 W/mK

Mechanical Load

Permanent 100%
 Variable permanent 100%
 Live 56%
 by sand bags

Fire Load

Timber cribs 50 x 50 mm - fire load 40 kg/m²

Instrumentation

148 thermocouples57 strain gauges

West view

East view

♦ 37 deformations

10 video cameras 2 thermo cameras

Contents

- Cardington Laboratory
- Structural Integrity Test
- Preparation
- Temperatures
- Connections
- Composite slab
- Conclusion

Temperatures

Gas 1108 °C in 55 min. (predicted 1078 °C in 53 min.) Beam 1088 °C in 57min. (predicted 1067 °C in 54 min.)

Temperature profiles

Thermo-cameras

Cooling

980,0°C

Contents

- Cardington Laboratory
- Structural Integrity Test
- Preparation
- Temperatures
- Connections
- Composite slab
- Conclusion

Fin Plate Temperature Profile

Header Plate Temperature Profile

BRE

Header Plate Strain Gagues

BRE

Local Buckling of Beam Lower Flanges

Fracture of End-Plates

Ovalization of holes in the web beam in the fin plate joints

Column Flange Buckling

Beam Web Shear Zones

Contents

- Cardington Laboratory
- Structural Integrity Test
- Preparation
- Temperatures
- Connections
- Composite slab
- Conclusion

Concrete slab cracking

Concrete slab deformation

Residual deformation max 925 mm

9.0

□ -90.0--80.0 □ -100.0--90.0

Conclusions

- Fracture of end plates
- Elongation of holes in fin plates
- Integrity of composite slab
- Collapse of structure not reached
 - Mechanical load 56%
 - Fire load 40 kg/m²

Thank you for your attention