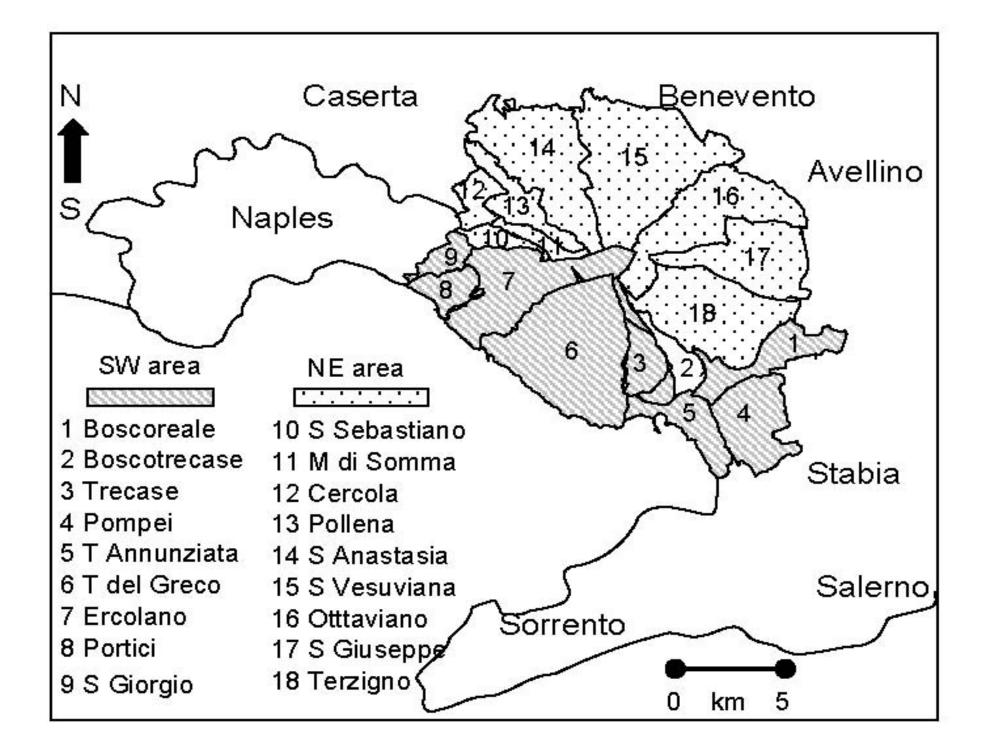
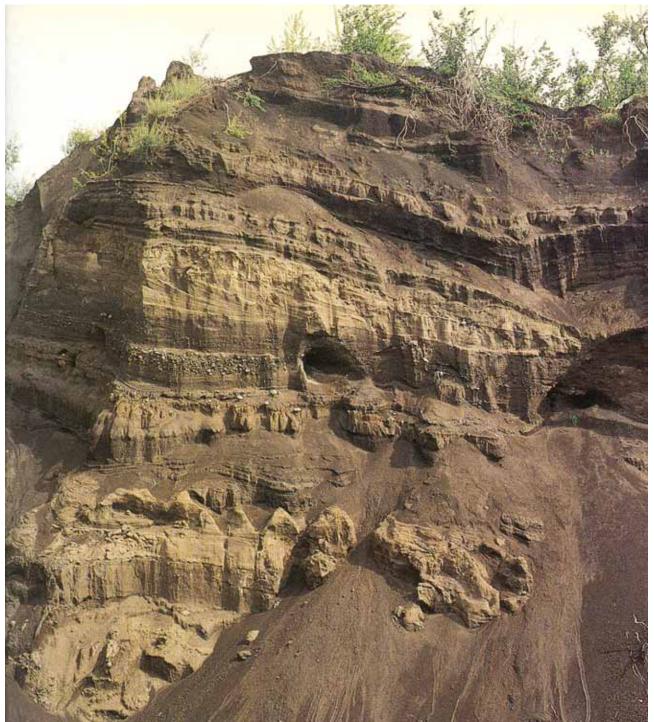
Urban Habitat Constructions Around Vesuvius

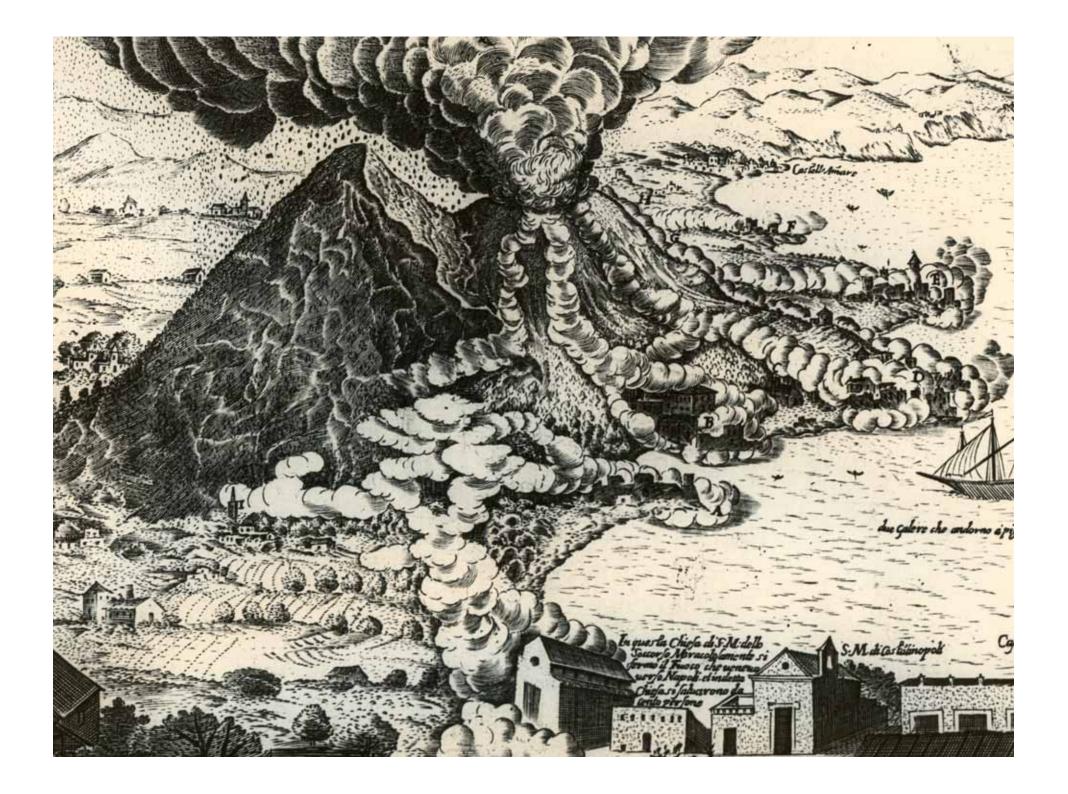
Environmental Risk and Engineering Challenges

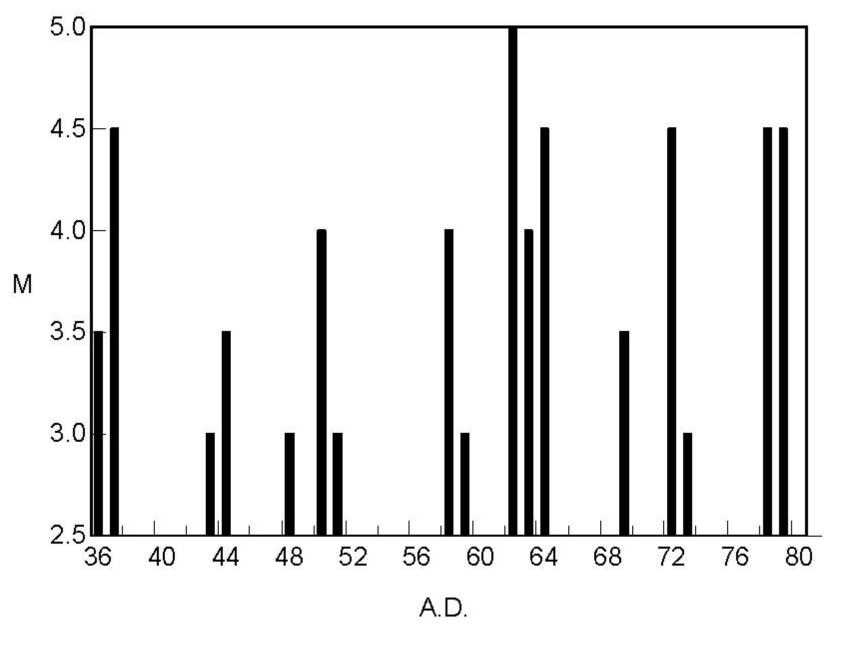
Flavio Dobran


GVES, Naples, Italy Hofstra University, New York, U.S.A.

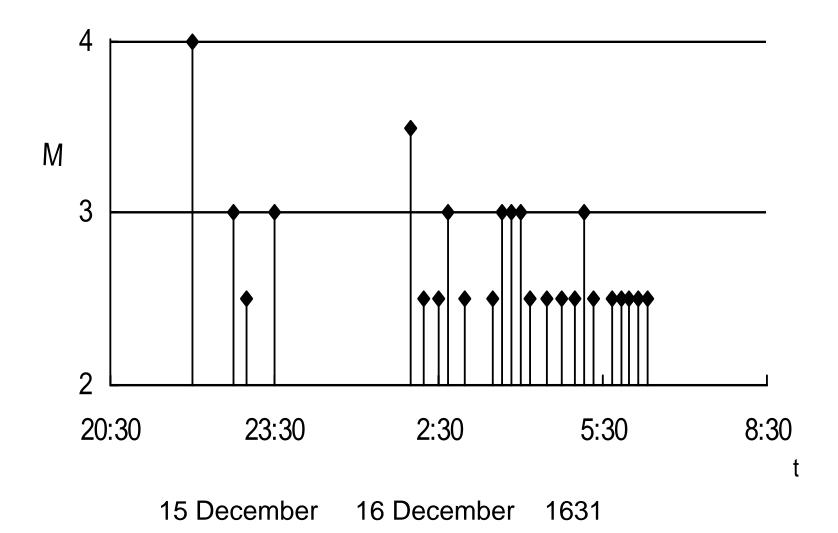

www.westnet.com/~dobran

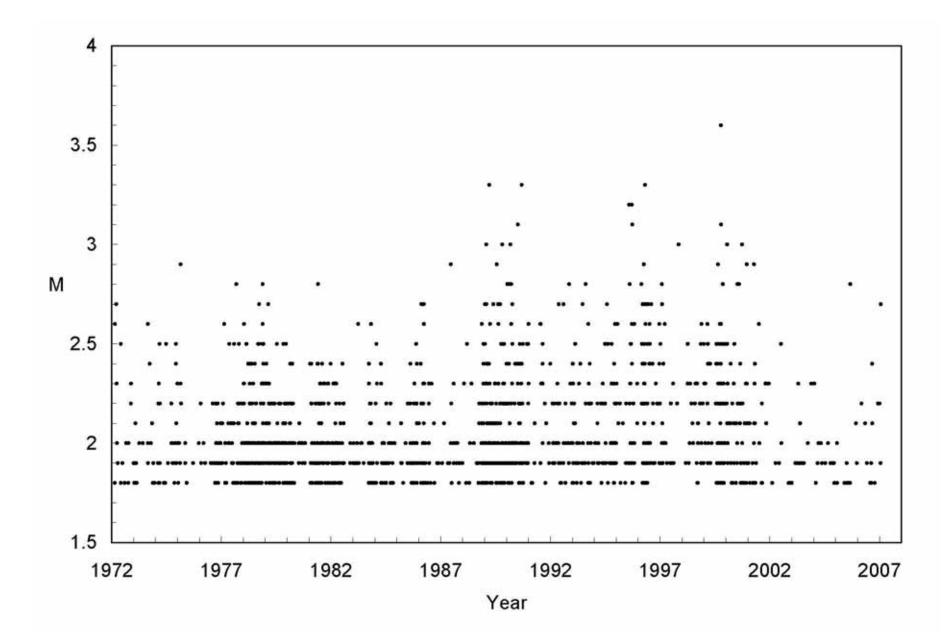
Urban Habitat Constructions Under Catastrophic Events Prague, 30-31 March 2007



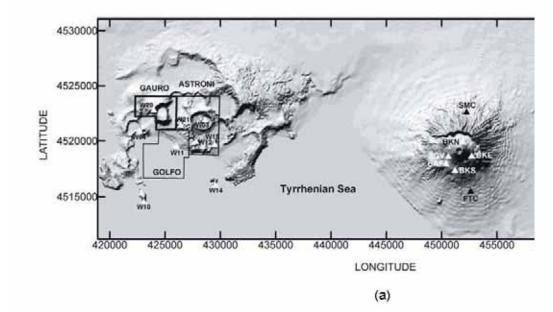

Eruption Deposits at Terzigno 1631 (top)

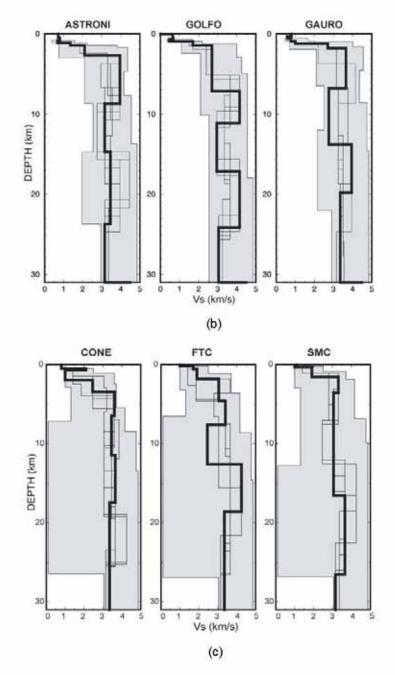
79 A.D. (bottom)


Transform]	Fall deposits		Pyroclastic surges and flows			
Eruption	Thickness	Distance	Direction	Thickness	Distance	Direction	
	m	km		m	km		
Basal 17,000 y.B.P. plinian	2 0.2	4.5 22	N NE	3.5	4	N	
Greenish 15,000 y.B.P. plinian	1 0.4	4.5 9	N N	15 2	4.5 9	N N	
Lagno Amendolare 11,000 y.B.P. plinian	2 1	4 20	NW E–NE	Absent			
Ottaviano 8000 y.B.P. plinian 22 km, 3 km ³	4 3 1.5 0.5	5 10 20 30	N–NE N–NE N–NE N-NE	10 3.5 0.5 0.1	4.5 7 3.5 20	N NE NE NE	
Avellino 3750 y.B.P. plinian 36 km, 4 km ³	0.8 1 0.6 0.1 1	6 15 30 40 3.5	E–NE E–NE E–NE E–NE NE	6 2 1 0.5 0.2	8 12 15 6 20	NW NW NW NE NW	
Pompeii 79 A.D. plinian, 30 km, 3 km ³	14 4 2 1	5 8 20 40	W S–SE S–SE S–SE	15 10 2 3	5 8 8 10	W W–SW N–NE SE	
Pollena 472 A.D. subplinian 20 km, ~ 1 km ³	1.3 1.2 0.9 0.3 0.7	5 8 20 30 10	NE NE NE NE NE	10–14 2 0.5	5 8 10	NW NW N–NE	
1631 A.D. subplinian 20 km ~ 1 km ³	0.7 0.5 0.3 0.2 0.1	8 10 15 20 25	E–NE E–NE E–NE E–NE E–NE	0.3 0.2 0.1 4	5 10 15 7	E–NE E–NE E–NE S	



Earthquakes preceding the eruption in 79 A.D.




Earthquakes preceding the eruption in 1631

Recent earthquakes (OV catalogue)

Volcanic substructure: (low seismic velocities below 6 km)

Guidarelli et al. (2006)

Choices for the future

- Do nothing; wait for eruption and pray that 600,000 people can be evacuated in 1-2 days
- Force the Vesuvius area into socio-economic decline by empowering organized crime and involuntary exodus
- Construct sustainable habitats for Vesuvians

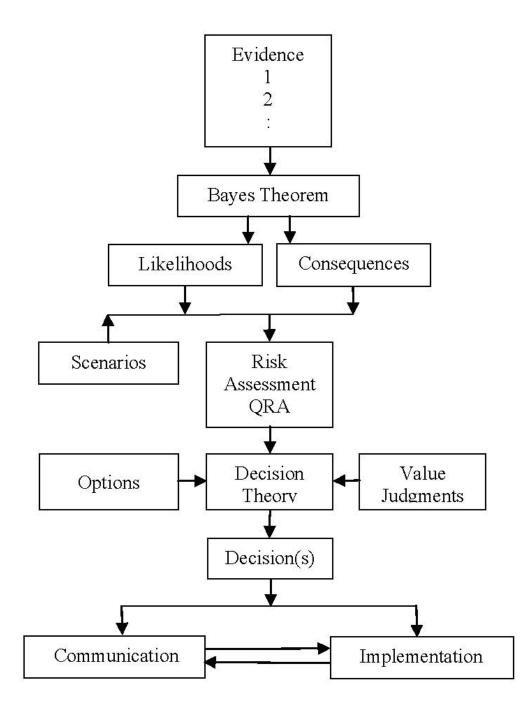
Risk analysis procedure

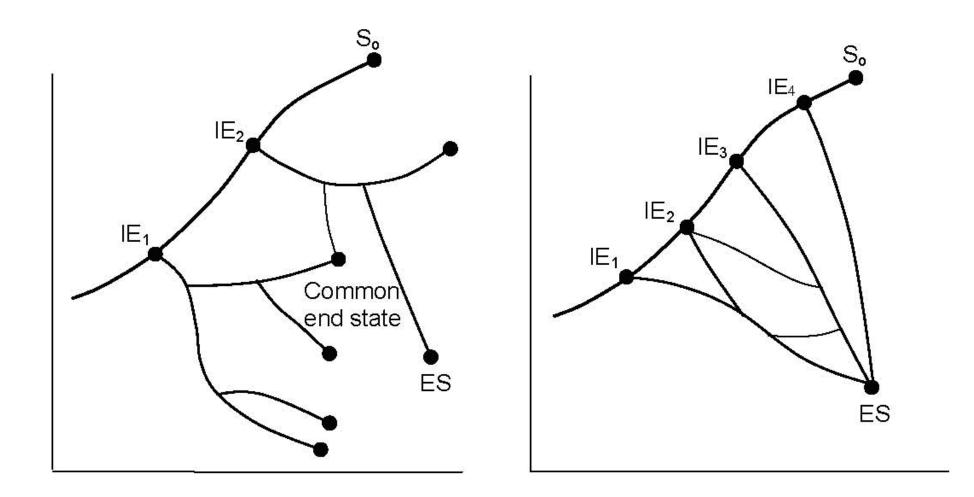
- Risk
 - > What can happen?
 - > How likely is that to happen?
 - > If it happens, what are the consequences?
- Risk includes
 - > All possible scenarios S_i
 - \succ Likelihood of each scenario L_i
 - > Consequences of *i*th scenario X_i

 $R = (S_i, L_i, X_i)$ complete

- Bayes Theorem
 - Tells us how much our confidence change when we learn new evidence
 - > If A is the proposition and E the evidence relevant to this proposition

$$P(A/E) = P(A) \frac{P(E/A)}{P(E)}$$

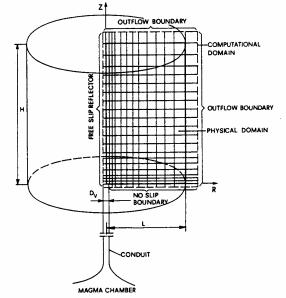

$$\uparrow \qquad \uparrow \qquad \uparrow$$


posterior prior likelihood

Quantitative Risk Analysis (QRA)

\succ Maximize utility of decision d_i

 $u(d_i) = P(X / d_i) = \sum_{j=1}^{m} P(X / d_i @ A_j) P(A_j / d_i)$

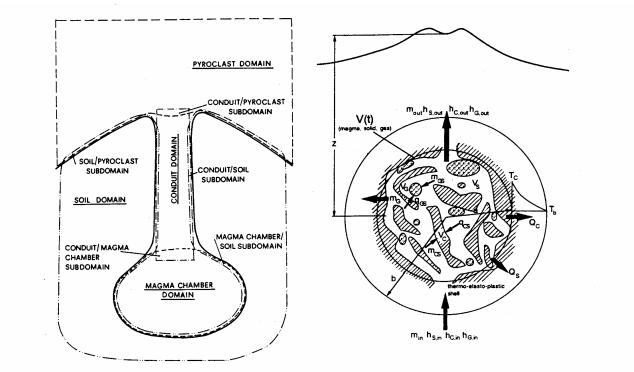


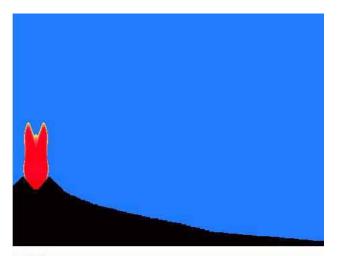
Scenario 'event trees'

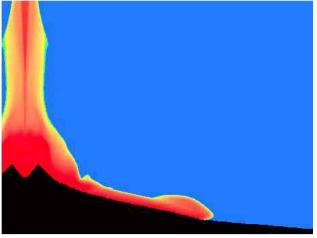
IS – initial state, ES – end state So – as planned scenario

Global Volcanic Simulator

- Physico-mathematical-computer model of entire volcanic system
- Determines scenarios and likelihoods of eruptions

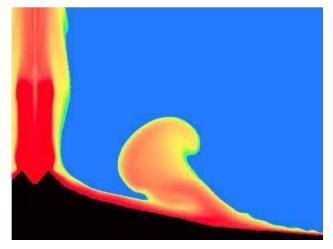

 $m^{(\alpha\delta)} = \rho^{(\alpha\delta)} (\mathbf{v}^{(\alpha\delta)} - \mathbf{S}^{(\Lambda\delta)}) \cdot \mathbf{n}^{(\alpha\delta)}$

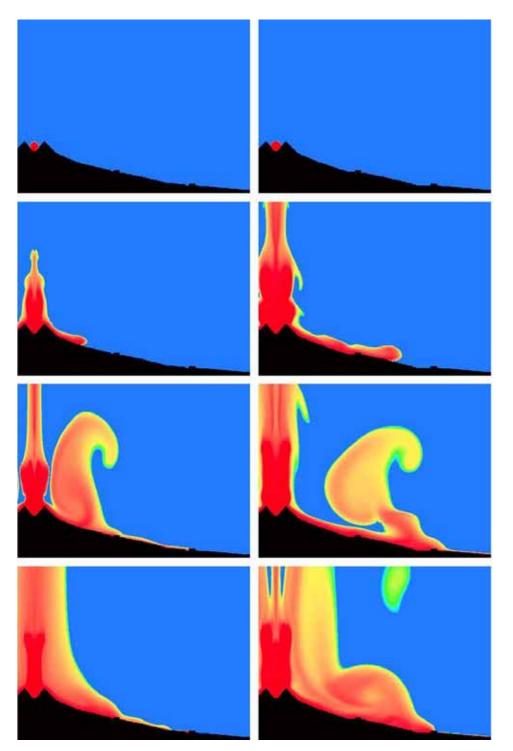

 $(m^{(\alpha\delta)}\Psi^{(\alpha\delta)} + \mathbf{J}^{(\alpha\delta)}\mathbf{n}^{(\alpha\delta)}) + (m^{(\beta\eta)}\Psi^{(\beta\eta)} + \mathbf{J}^{(\beta\eta)}\mathbf{n}^{(\beta\eta)}) = \boldsymbol{\Delta}^{(\alpha\delta)}$


$$rac{\partial T_t}{\partial t}(
ho^{(lpha \delta)} \Psi^{(lpha \delta)}) + oldsymbol{
abla}^o \cdot (
ho^{(lpha \delta)} \Psi^{(lpha \delta)} \mathbf{v}^{(lpha \delta)}) + oldsymbol{
abla}^o \cdot \mathbf{J}^{(lpha \delta)}
onumber \ -
ho^{(lpha \delta)} \Phi^{(lpha \delta)} =
ho^{(lpha \delta)} \mathbf{B}^{(lpha \delta)}$$

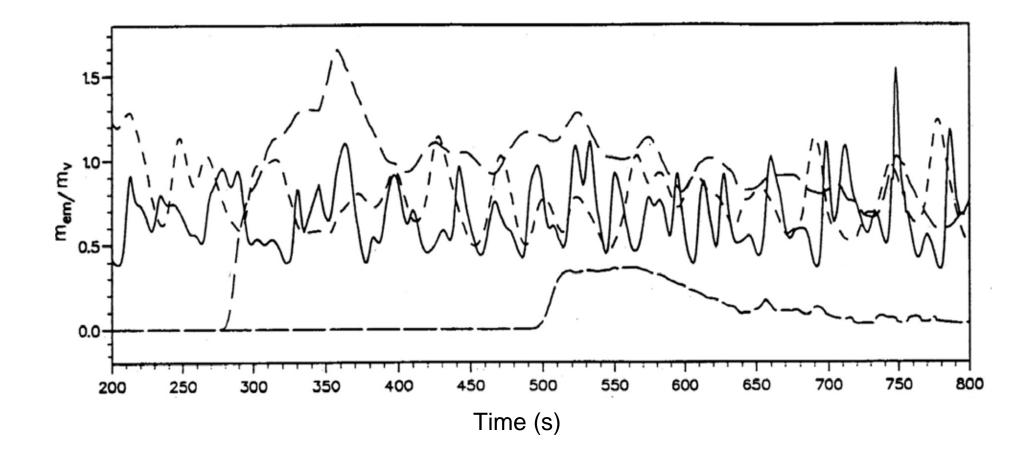
Ξé	· — (211 211	.01	• , • 0	T. N. A.		`,		ġ	<u></u>
	_									
	θ,	(~5) ~ (~ 6)\	-	(06).	T. (ab)	$v^{(\alpha\delta)}) + c$		αδ)	
	$\overline{\alpha}(\rho)$	Ψ	····)+	V° •(p	$\Psi^{(\alpha \circ)}$	v(~~)+	V.J.	,	
	Ot "									

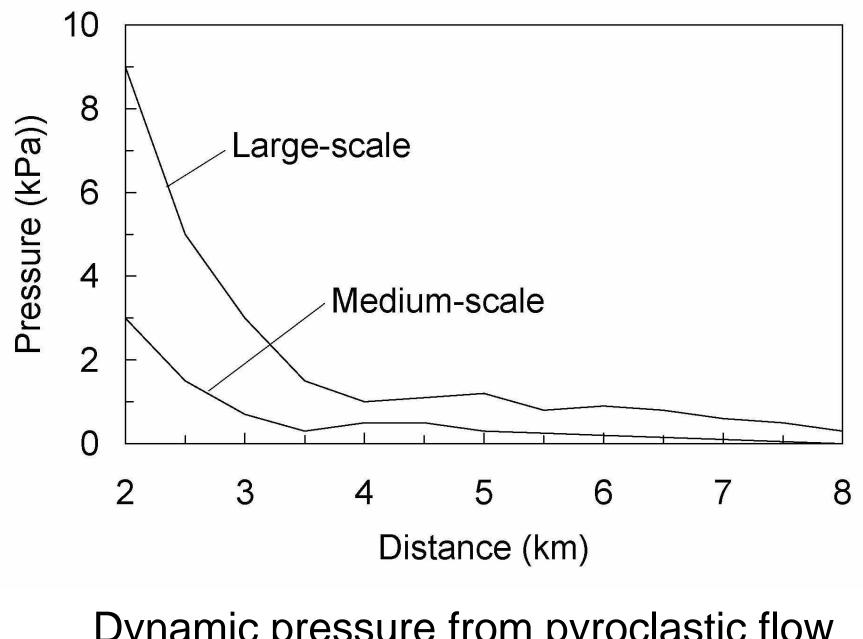
Law	Mass	Linear	Angular	Energy	Entropy		
		Momentum	Momentum				
$\Psi^{(\alpha\delta)}$	1	$\mathbf{v}^{(\alpha\delta)}$	$\mathbf{r} \times \mathbf{v}^{(\alpha \delta)}$	$\epsilon^{(\alpha\delta)} + \frac{1}{2} \mathbf{v}^{(\alpha\delta)} \cdot \mathbf{v}^{(\alpha\delta)}$	$s^{(\alpha\delta)}$		
J ^(αδ)	0	$-\mathbf{T}^{(lpha\delta)}$	$-\mathbf{r} imes \mathbf{T}^{(lpha \delta)}$	$\mathbf{q}^{(lpha \delta)} - \mathbf{T}^{(lpha \delta)T} \mathbf{v}^{(lpha \delta)}$	$\mathbf{h}^{(lpha \delta)}$		
$\mathbf{\Phi}^{(\alpha\delta)}$	0	$\mathbf{b}^{(\alpha\delta)}$	$\mathbf{r} \times \mathbf{b}^{(\alpha \delta)}$	$\mathbf{b}^{(\alpha\delta)} \cdot \mathbf{v}^{(\alpha\delta)}$	$R^{(\alpha\delta)}$		
$\mathbf{B}^{(\alpha\delta)}$	0	0	0	$r^{(\alpha\delta)}$	$\zeta^{(\alpha\delta)}$		
$\Delta^{(\alpha\delta)}$	0	$\Delta_m^{(\alpha\delta)}$	$\mathbf{r} imes \Delta_m^{(lpha \delta)}$	$\Delta_{\epsilon}^{(\alpha\delta)}$	$\Delta_s^{(\alpha\delta)}$		
$\Delta_m^{(\alpha\delta)} = (2H\nu\mathbf{n} + \nabla_s \nu)^{(\alpha\delta)}, \qquad R^{(\alpha\delta)} = r^{(\alpha\delta)}/\theta^{(\alpha\delta)}, \qquad \zeta^{(\alpha\delta)} \ge 0$							
$\Delta_{\boldsymbol{\epsilon}}^{(\alpha\delta)} = (2H\nu\mathbf{n}\cdot\mathbf{S} + \nabla_{\boldsymbol{s}}\nu\mathbf{S} + \nu\nabla_{\boldsymbol{s}}\cdot\mathbf{S})^{(\alpha\delta)}, \qquad \Delta_{\boldsymbol{\epsilon}}^{(\alpha\delta)} \geq 0$							





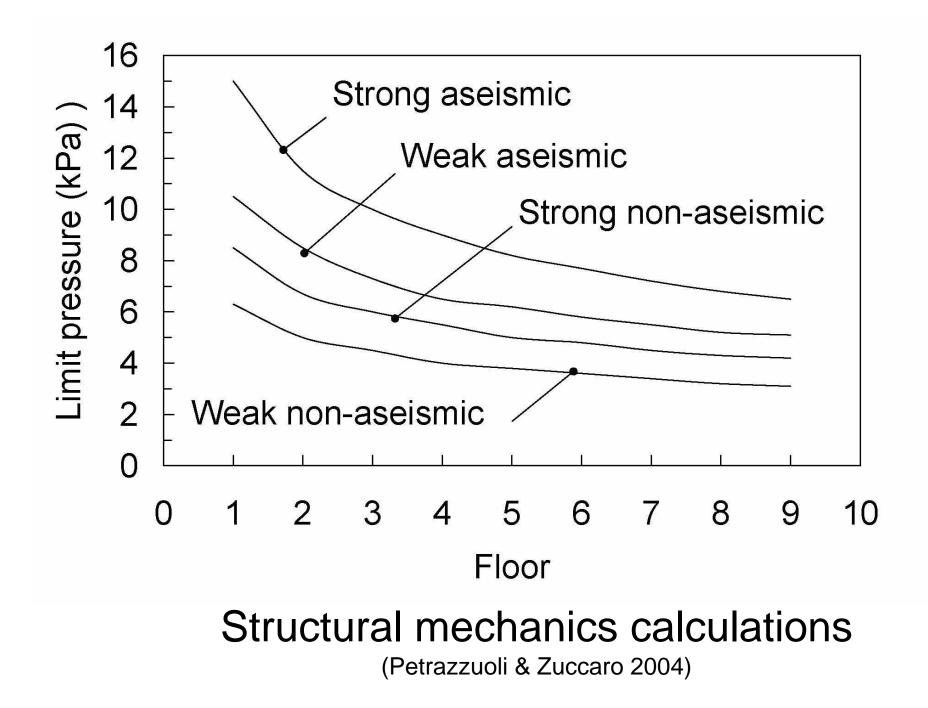
Plinian eruption 20, 120, 300 s




30 m high obstacles at 3 and 5 km

Sublinian eruption (left) 0, 30, 300, 900 s Flow stopped at 5 km

Plinian eruption (right) 0, 180, 300, 400 s Flow stopped at 5 km


Plinian eruption pyroclastic mass flow loadings: R=3 (solid line), 6 (short dash), 10 (medium dash), 15 km (long dash) from the vent

Dynamic pressure from pyroclastic flow 10 m from the ground

Vulnerability of structures

- Horizontal pressure limits of structures
 - ➤ 4-8 kPa (weak non aseismic r.c. blds)
 - >7-9 kPa (yellow tuff masonry walls)
 - ➢ 6-14 kPa (strong aseismic r.c. buildings)
 - > 20-26 kPa (volcanic masonry buildings)
- Roof loading from tephra
 - > 4500 kg/m² (< 5 km)</p>
 - > 3000 kg/m² (5-8 km)
- Pyroclastic flow/surge loading
 ➤ < 2 kPa (> 5 km), 200-500°C (human survival <5 min)

Vulnerability of structures

• Seismic Zoning (Panza & co-workers)

Input: source and medium characteristics actual or parametrized

- Output: ground displacement, velocity, acceleration, frequency content
- Vesuvius area: displacement_{max} velocity_{max} acceleration_{max}
 - = 20 cm; period = 30 s = 60 cm/s; period = 25 s = 0.5 g

Vulnerability of structures

- Structures incorporating Response Control Systems to dissipate seismic energy (Mazzolani & co-workers)
 - Seismic isolation
 - Energy dissipation
 (hysteretic and/or viscous dampers elements)
 - Mass effect systems

(systems resonating out of phase with source)

Future habitat for Vesuvians

- The Grand Challenge
 - \blacktriangleright exclusion zone (< 5 km radius)
 - \succ limited protection (5-8 km radius)
- - \succ sustainable habitat (> 8 km radius)
 - \succ engineers need to understand:
 - patterns of supply and use of materials, energy, information, services, products
 - protection measures against earthquakes, tephra fall, fyroclastic flows, ballistic blocks

- Urban center design imperatives
 - > Sustainability
 - basic human needs (food, water, space)
 - socio-political rights
 - health care
 - education
 - equitable distribution of resources
 - jobs
 - housing
 - sense of belonging
 - Imited geographical & resources footprints
 - autoregulation of territory
 - manageability

System of systems approach

- balance localized and centralized activities
- spread transportation, utilities, recreation, business, residential neighborhoods across interconnected clusters
- decide levels of interaction between
 - biological component (human activities, vegetation, microorganisms)
 - social component (ideas, collective, activities, organizations of inhabitants)
 - □ <u>machine component</u> (life support artifacts)

- Engineering challenges
 - 1. What are the sustainability design paradigms?
 - 2. How will safety requirements limit options in other sectors?
 - 3. Does the defense from the volcano require new paradigms for urban infrastructure?
 - 4. Is homeland defensible against all conceivable scenarios?
 - 5. What methods of energy supplies and waste disposal and recycling are required?

- Engineering challenges (continued)
 - 6. What kind of habitat (centralized vs. clustered?
 - 7. How will the habitats interact with Naples and surroundings?
 - 8. What cultural patrimonies can be protected and how to protect them?
 - 9. What can remain within the exclusion zone?
 - 10. How to effectively cooperate with politicians, other professionals, and people?

VESUVIUS 2000 (Dobran et al. 1995, 2006)

- Objectives
 - Determine scenarios and likelihoods
 - Assess vulnerabilities
 - Develop educational methodologies
 - Produce sustainable habitat(s)
- Methodology
 - Physical environment
 - Population
 - > Territory

Vesuvius evacuation plan: Mass deportation

Conclusions

- Sustainable habitat(s) should be built for Vesuvians (> 8 km from the volcano)
- Employ habitat design tools: Global Volcanic Simulator, Seismic Zoning, Urban System Simulations, Response Control Systems, etc.
- Involve politicians, people, professionals
- Start working now