The prevention of disproportionate collapse using catenary action

Mike Byfield BEng, PhD, CEng, MICE, MIstructE
and
Sakthivel Paramasivam BEng, MSc

School of Civil Engineering and the Environment
University of Southampton, United Kingdom
1983 US Marine Corps HQ, Lebanon - 241 dead + 60 wounded
Catenary Action

Steel columns

Damage

Catenary Action

Redistribution of perimeter column loads through hat truss in WTC1
Tying Force Method

Accidental limit state load = 1.05 g_k + 0.33 q_k

UK approach
DAF = 1
Pinned joints
Full reliance on catenary action
Notes:
All columns – 356 x 406 x 235 UC
All main beams – 533 x 210 x 82 UB
All secondary beam – 457 x 191 x 67 UB
Steel grade – S355
Concrete grade – C35
Imposed load – 5 kN/m²
Partition load – 1 kN/m²
Design rotation capacity = 4°
The Best Guess Scenario, FoS = 0.12

- Full tensile strength of the slab included
- DAF = 1.5

Accidental limit state load = 1.05 \(g_k \) + 0.33 \(q_k \)

\[\frac{528}{4569} = 0.12 \]
The Best Case Scenario, FoS = 0.19
 – Full tensile strength of the slab included
 – DAF = 1.0

The Worst Case Scenario, FoS = 0.08
 – Tensile strength of the slab ignored
 – DAF = 2.0 in accordance with US practice
What if we have unlimited ductility in the connections?

\[DLF=1.5 \]

Slab strength included
Joint 'A' Joint 'C'

A

C

24°
3.84 m

DLF=1.5

Slab strength included

Joint ‘A’

Joint ‘C’
(b) Joint ‘A’

c) Joint ‘C’
Unsupported columns
1995 Federal Murrah Building
Typical Canary Wharf Tower –

- Flexible cladding
- No stiff internal partitions
- No columns between service cores and perimeter
- Number of columns minimised by use of transfer beams
- Low stiffness slab
- Low ductility “Pinned connections”
Rupture
Figure 8a

Connection – Type 4

VBH Patent

Extreme Event Beam Link Connection

- **Completed**
 - Retracted link bars (33) fitted in shop and lifted with previous beam
- **During Erection**
 - Slots through flanges (12), No stiffeners
 - Shop welded fin plate (11)
 - Shop welded fin plates (34)

ERECPTION

- **Stage 1** Fix beam to fin plate only
- **Stage 2** Link bars later and off critical path of construction programme
Available rotation capacity for industry standard semi-rigid composite connections limited to:

- 1.80° for S355 beams
- 1.43° for S275 beams
End plate (Detail 2)

533 x 210 x 82 UB

20mm stiffener

4T16 rebars

203 x 86 UC

6 No. holes 22φ for M20 bolts

Detail 2
Conclusions

• Tying capacity of “industry standard” connections is generally determined in the absence of beam rotations.

• Connections can develop a prying action that leads to rapid failure.

• Tying method will not prevent progressive collapse when used with low ductility connections.

• Semi-rigid (partial strength) connections have insufficient ductility to survive the demands of catenary action.