

COST C26

Urban habitat constructions under catastrophic events

1st Workshop *Prague, 30th-31st March, 2007* WG2 – earthquake resistance

<u>Shear panels for seismic upgrading of new and</u> <u>existing structures</u>

G. De Matteis, G. Brando PRICOS, University of Chieti/Pescara

F. M. Mazzolani, S. Panico, A. Formisano Dept. of Structural Engineering, University of Naples "Federico II"

Tension field mechanism (*elastic buckling*) Pure shear mechanism (no-buckling)

ALUMINIUM ALLOY USED FOR SHEAR PANELS

Cycles of heat treatment of the aluminium alloy

Material	$f_{0.2}$	f_u	\boldsymbol{e}_{u}	E	$E/f_{0.2}$	$a = f_u / f_{0.2}$
	[N/mm ²]	[N/mm ²]	%	[N/mm ²]	[N/mm ²]	
LYS steel	86	254	50	210000	2442	2.95
Nominal Pure Aluminium (EN-AW 1099A)	15-20	40-50	40-50	70000	3500-4666	2-3.3
Nominal Pure Aluminium (EN-AW 1050A)	30-70	70-100	20-40	70000	1000/2333	2.33-3.33
Employed Pure Aluminium (EN-AW 1050A)	80	100	5	70000	875	1.25
Heat Treated Pure Aluminium (EN-AW 1050A)	21.3	80	45	70000	3286	3.76

ALUMINIUM ALLOY USED FOR SHEAR PANELS-Cyclic behaviour

EXPERIMENTAL CAMPAIGN ON FULL BAY TYPE PURE ALUMINIUM SHEAR PANELS

TESTED CONFIGURATIONS OF FULL BAY SHEAR PANELS

NUMERICAL SIMULATION OF EXPERIMENTAL TESTS ON ALUMINIUM PANELS

ANALYTICAL INTERPRETATION OF EXPERIMENTAL TESTS

HARDENING RATIO

$$\tau_{max}/\tau_{02}$$

ANALYTICAL INTERPRETATION OF EXPERIMENTAL TESTS

ANALYTICAL INTERPRETATION OF EXPERIMENTAL TESTS

DIAGONAL TESTING SYSTEM FOR BRACING TYPE SHEAR PANELS

GEOMETRICAL CONFIGURATION OF TESTED SHEAR PANELS

EXPERIMENTAL RESULTS FOR BRACING TYPE PANELS

ADDITIONAL TESTED CONFIGURATIONS

BTPASP configuration 3 (b/t=33)

BTPASP configuration 4 (b/t=25)

EXPERIMENTAL RESUTS

SEISMIC PROTECTION OF EXISTING R.C. BUILDINGS BY METAL SHEAR PANELS

ILVA-IDEM (Intelligent DEMolition) RESEARCH PROJECT Coordinator: prof. F.M.Mazzolani - University of Naples "Federico II"

Module n°5 Metal shear panels

SEISMIC PROTECTION OF EXISTING R.C. BUILDINGS BY METAL SHEAR PANELS

Module n°5 Metal shear panels

Steel panels

Aluminium panels

THE BUILDING UNDER INVESTIGATION

Other than the structural degradation due to both age and environmental conditions, the experimental test on SMA braces in the transversal direction determined a further reduction of the module mechanical features Such a situation has been considered in the definition of the numerical model of the sub-structure, which has been used in order to calibrate the structural cyclic experimental behaviour in the longitudinal direction, where seismic retrofitting intervention has been foreseen

Spostamento (mm)

TEST ON THE BARE RC FRAME

SEISMIC RETROFITTING METHODOLOGY AND DESIGN OF RC STRUCTURES BY MEANS OF METAL SHEAR PANELS

Starting from the knowledge of the contribution which shear panel should provide in terms of both strength and stiffness, its design can be performed by means of the following simplified theoretical relationships:

$$V = \frac{1}{2} f_y t \, bL \sin 2\alpha$$

Shear panels are realised with two different metallic materials:

SEISMIC RETROFITTING METHODOLOGY AND DESIGN OF RC STRUCTURES BY MEANS OF METAL SHEAR PANELS

FHE EXTERNAL STEEL FRAME

SEISMIC RETROFITTING METHODOLOGY AND DESIGN OF RC STRUCTURES BY MEANS OF METAL SHEAR PANELS

THE STEEL FRAME – RC STRUCTURE CONNECTIONS

MEASUREMENT DEVICES

CYCLIC TEST ON THE RC MODULE – STEEL PANELS COMPOSED STRUCTURE

From the cyclic tes Creation Buckling pl Very pronunced buckling waves which ates, coincident with the unloading upper su panels interest all panel fields (folding disappears) ent er subpanel which make the system less rigid and delay the activation of the tension field

CYCLIC TEST ON THE RC MODULE - ALUMINIUM PANELS COMPOSED STRUCTURE

CYCLIC TEST ON THE RC MODULE – ALUMINIUM PANELS

COMPARISON BETWEEN EXPERIMENTAL RESULTS

Displacement (mm)

CONCLUSIONS

- 1. The use of metal shear panels for the seismic protection of new and existing buildings has been investigated;
- 2. Experimental tests on full bay, bracing type and partial bay type pure aluminium shear panels have been carried out;
- 3. The obtained results emphasize that shear metals panels actually represent a very attractive strategy to reduce the seismic vulnerability of new (steel) and exiting (RC) framed structures subjected to large earthquakes.