

March 30-31, 2007 - Prague, Czech Republic

Full-scale cyclic tests of a real masonry-infilled RC building for seismic upgrading

F.M. Mazzolani, Gaetano Della Corte, L. Fiorino, E. Barecchia

Department of Structural Engineering University of Naples Federico II

Original building

BASIC DATA •Construction period: end of '70s •Plan dimensions: 18.50m x 12.00m •Floor area: 222 mq •N° of floors: 2 •Total height on ground: 8.85 m •Total volume: 1965 mc

Original building

BASIC DATA •Construction period: end of '70s •Plan dimensions: 18.50m x 12.00m •Floor area: 222 mq •N° of floors: 2 •Total height on ground: 8.85 m •Total volume: 1965 mc

Research objectives Multi-task research

- 1. Experimental task:
 - Multi-step tests on a real masonry-infilled RC building
 - 1.1 One "push-pull" test on the original building (next indicated as test #1)
 - 1.2 One "push-pull" test on the building with MW_FRP (next indicated as test #2)
 - 1.3 One "push-pull" test on the building with BRB
- 2. Numerical task:

. . .

2.1 Development and calibration of numerical models2.2 Vulnerability assessment

Original building

STRUCTURAL AND NON STRUCTURAL ELEMENTS

Test equipment

Test #1 - Summary

Test #1 - Summary

Reconstruction of perimeter infill panels and FRP structural repointing (NSM FRP bars in the bed joints)

Experimental results - comments

Components contributing to lateral resistance

Test #1: one fully-reversed load cycle into inelastic range (degradation)

- 1. RC columns
- 2. Staircase structure
- **3. Perimeter MWs** (two-sided: clay + light concrete bricks)
- 4. Internal MWs (single-sided: light concrete bricks)

Test #2: lack of contribution of staircase and internal MWs
1. RC columns (only few external columns repaired)
2. Perimeter MWs (two-sided: clay + light concrete bricks)

It explains the strength reduction in the second test

Experimental results - comments

Strength contribution from: (columns + staircase + M)(s) - (columns + M)(s/FRP) = staircase (at large displacements, strength contribution from MWs vanishes and the FRP contribution is considered negligible)

At $u_{roof} = 20$ cm, Test #1 gives: $V_{b,1} = 1425$ kN Test #2 gives: $V_{b,2} = 1000$ kN Hence: $V_{b,2} - V_{b,1} = 425$ kN

Estimated contributions to resistance: Staircase structure \rightarrow 425/1425=0.30 RC columns + MWs \rightarrow 1000/1425=0.70

Experimental results - comments

Back-analysis of building response during both test #1 and test #2 will help in quantifying the percentage contribution to strength of different sources

Numerical models must be set-up and calibrated against experimental data

Seismic performance criteria

S _d : T = 475 years (severe damage)RC frame + MW1.5S _d : T ≈ 1600 years (collapse)											
θ_{\max} (rad)	Soil A	Soil B,C,E	Soil D		θ_{\max} (rad)	Soil A	Soil B,C,E	Soil D			
Zone 1	0.007	0.011	0.018		Zone 1	0.011	0.017	0.027			
Zone 2	0.005	0.008	0.012		Zone 2	0.008	0.012	0.019			
Zone 3	0.003	0.005	0.007		Zone 3	0.005	0.007	0.011			
Zone 4	0.001	0.002	0.002		Zone 4	0.002	0.002	0.003			

Simplified analysis of seismic demand - results

<mark>S_d</mark> : T = 475 years (severe damage)			RC frame		1.5S _d : T ≈ 1600 years (collapse)			
θ_{\max} (rad)	Seil A	Soil B,C,E	Soil D		θ_{\max} (rad)	Soil A	Soil B,C,E	Soil D
Zone 1	0.010	(0.016)	0.027		Zone 1	0.016	0.024	0.041
Zone 2	0.007	0.012	0.019		Zone 2	0.011	0.017	0.029
Zone 3	0.004	0.007	0.011		Zone 3	0.007	0.010	0.017
Zone 4	0.001	0.002	0.003		Zone 4	0.002	0.003	0.005

Tests on masonry specimens

Tests on masonry specimens - results Original masonry (test #1)

Experimental results (6 specimens) Mortar: f_{m.m} = 2.5MPa (Italian standard M4) Masonry: $f_{m.m} = 6.6MPa$

Mortar: f_{m.m} = 2.5MPa (Italian standard M4) Masonry: $f_{m,m} = 1.4MPa$

Masonry:

$$\alpha = \frac{h_m}{4.1h_b} \quad U = 2 - f_m / 34.5$$

$$f_m < 27.6$$

 $f_{w} = 0.9 \frac{f_{b} \left(f_{bt} + \alpha f_{m} \right)}{U \left(f_{t} + \alpha f_{t} \right)} \qquad \qquad f_{m} \rightarrow \text{mortar compression strength}$ $f_{bt} \rightarrow$ brick tensile strength $h_m \rightarrow$ mortar joint depth $h_{h} \rightarrow$ brick depth

Hilsdorf (Paulay & Priestley, 1992)

Non-uniform stress distribution factor

Tests on masonry specimens - results Original masonry (test #2)

Non-uniform stress distribution factor

MW modelling (without openings)

Basic concepts

Initial stiffness \rightarrow composite shear wall

Strength \rightarrow equivalent strut

(with partial interaction because of microcracking, initial separation,...)

The equivalent strut width (contact area) reduces as far as the displacement increases.

MW modelling (without openings)

Basic features

 $N = E_m I_m t \left(\frac{u}{h} \right)^2$ (FEMA 306, 1998) $\tau_0 = 0.04 f_m (kg_f / cm^2)$ (Paulay & Priestley, 1992)

MW modelling (without openings)

Basic features

Compression failure $V_{m,cr} = atf_m \cos \theta$ $a = 0.175(\lambda h)^{-0.4} d_m \qquad d_m = \sqrt{I_m^2 + h_m^2} \qquad \lambda = \left(\frac{E_m t \sin 2\theta}{4E_c I_g h_m}\right)^{1/4}$

Stafford Smith et al. 1966; Mainstone, 1974; Klingner & Bertero, 1978; FEMA 306, 1998)

MW_FRP modelling (without openings) Basic features

Design guidelines for the strengthening...using FRP systems – University of Missouri-Rolla, March 2005

MW_FRP modelling (with openings) Basic features

Each sub-panel is substituted by an equivalent strut. The height of the sub-panel is obtained by a suggestion given by Dolce (1989).

MW_FRP modelling (with openings)

Basic features

Al-Chaar, 2002

GNDT (National Italian Team for Seismic Protection)

A_a = 100(ab)/(hl); A_c = 100(a/l)

Unstrengthened NR: $r_{ac} = 0.78e^{-0.322 \ln A_a} + 0.93e^{-0.762 \ln A_c}$

Intermediate SR: $r_{ac} = 1.04e^{-0.322 \ln A_a} + 1.51e^{-0.762 \ln A_c}$

Strengthened RE: $r_{ac} = 1.25e^{-0.322 \ln A_a} + 1.97e^{-0.762 \ln A_c}$

 $r_{ac} \le 1; A_a \le 25\%; A_v \le 40\%$

If a = I then the panel contribution is neglected

MW modelling

Panagiotakos & Fardis, 1994

MW modelling

Mostafaei & Kabeyasawa, 2004

MW modelling

Mostafaei & Kabeyasawa, 2004

Openings and existing infill damage are considered by reducing the diagonal strut width

$$a_{red} = aR_1R_2 \qquad R_1 = 0.6\left(\frac{A_{open}}{A_{panel}}\right)^2 - 1.6\left(\frac{A_{open}}{A_{panel}}\right) + 1 \qquad R_2 \quad Table from FEMA 306$$

RC modelling

