

Connection Modelling in Fire

Ian Burgess

EC3-1.8 Stiffness classification of joints

Strength:

- "Full-strength": Bending strength > Strength of member.
- "Partial-strength"
- "**Pinned**": Bending strength < 0.25 Strength of member.

Ductility:

- "Ductile/Class 1": Sufficient rotation capacity to develop plastic mechanism.
- "Semi-ductile"
- "Brittle/Class 3": Can only be used in elastic design.

Component Modelling at Ambient Temperature

Equivalent spring model

Moment-rotation behaviour in fire

Semi-rigid behaviour of connections in fire: original work

Late 80s – early 90s

- **Design opportunity?** Interest particularly based on using connection residual stiffness and strength to enhance the fire resistance of "simple" steel beams.
- **Analytical studies** to assess the likely advantages/problems.

Semi-rigid behaviour of connections in fire: cruciform tests

Mid – 1990s

- **Cruciform tests** to create small database of $M-\phi$ curves. Semi-empirical models to rationalise results.
- 2 successive experimental projects at BRE Garston (Lennon) in "portable" furnace.
 - 1. First series (Leston-Jones) tested a limited range of small non-composite flush-endplate connections.
 - 2. Second series (Al-Jabri) tested flush and extended endplate connections in composite and non-composite arrangements, including some Cardington connections.

Garston cruciform tests: test arrangement

Garston cruciform tests: "portable" furnace

High-temperature M- ϕ - θ characteristics of endplate joints

Cardington beam-column joint after fire test

Component Behaviour at High Temperatures

Spyrou Component testing 1998-2001: Objectives

Tension Zone

- Do experiments on T-stubs at high temperatures.
- Develop simplified/semi-empirical model of tension component behaviour for end-plate joints.
- Check both against finite element modelling.

Compression Zone

- Examine experimentally the effect of elevated temperatures on column web buckling.
- Develop simplified/semi-empirical model of column web compression component behaviour for end-plate joints.
- Check both against finite element modelling.

Generally

• Check flush endplate moment-rotation predictions against previous cruciform furnace tests.

Simplified model of compression zone

Principles of simple compression zone model

Qian shear panel tests

Restrained high-temperature joint testing

Qian & Tan restrained tests

Qian & Tan restrained tests

Qian & Tan restrained tests

Component Modelling in Fire

1. Modified Rotational Models

Simoes da Silva (2001) component approach

- Find ambient-temperature force-displacement response at ambient temperature according to EC3-1-8 component method principles.
- Apply high-temperature material reduction factors for stiffness and strength to produce high-temperature equivalents.

$$F_{i, \theta}^{y} = k_{y, \theta} \times F_{i, 20^{\circ}C}^{y}$$
$$K_{i, \theta}^{e} = k_{E, \theta} \times K_{i, 20^{\circ}C}^{e}$$
$$K_{i, \theta}^{pl} = k_{E, \theta} \times K_{i, 20^{\circ}C}^{pl}$$

Component Modelling in Fire

2. General Connection Elements

The "Component" method with axial force

 In fire axial compression acts together with moment due to restraint to thermal expansion. Component model would deal with this automatically, though M-φ curves change due to thrust.

The "Component" method with axial force

 In fire axial compression acts together with moment due to restraint to thermal expansion. Component model would deal with this automatically, though M-φ curves change due to thrust.

The "Component" method with axial force

 In fire axial compression acts together with moment due to restraint to thermal expansion. Component model would deal with this automatically, though M-φ curves change due to thrust.

Component-Based Connection Element (Block)

Tension Spring –
T-Stub in End-Plate
Compression Spring - Column Web
Shear Spring - Bolts

Comparison of joint element with tests by Leston-Jones

Component-based connection element: beam shear panel

The end ...

... nearly ...

Robustness in tying (tension) of typical connection details in fire.

Failure of tab plates in WTC 5 column trees

... Thank you