Application of Structural Fire Design Prague, Czech Republic, 29 April 2011

BEHAVIOUR OF HEATED COMPOSITE JOINTS Preliminary numerical studies

<u>Cécile Haremza</u>, Aldina Santiago and Luís Simões da Silva

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

INTRODUCTION

EUROPEAN RFCS ROBUSTFIRE PROJECT

- New design criteria of car parks with sufficient ROBUSTNESS under localised fire
- Practical design guidelines

EXPERIMENTAL TESTS

- **Behaviour study** of the frame elements directly affected by the localised fire
- Combined **BENDING MOMENT and AXIAL LOADS** in the heated joint when catenary action developed in the frame;
- LOSS OF THE COLUMN;
- Influence of the lateral restraints

NUMERICAL MODELS TO PREPARE THE EXPERIMENTAL TESTS

Institute for Sustainability and Innovation in Structural Engineering

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

Cécile Haremza

IPE550

3

NUMERICAL MODEL OF THE END-PLATE DEFORMATION

SIMPLIFIED 2D MODEL

- Localised deformation observed at the steel end-plate centre in the exp. tests;
- C3D8R solid and contact elements;
- Initial deformation of the end-plate centre (0,6 mm);
- <u>Temperatures</u> measured directly applied;
- Deformation mode due to:
 - o Initial deformation of the plate
 - **o** Different thicknesses column/plate
 - (19mm column > 15mm plate)

DETAILED 3D MODEL

→ Similar deformation

ISISE Institute for Sustainability and Innovation in Structural Engineering

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA