

A Macroscopic Finite Element based Computer Model for Evaluating the Fire Response of FRP-Strengthened Reinforced Concrete Beams

Ahmed, A. and Kodur, V.K.R.

Dept. of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824-1126

Background

Fire Performance - FRP

- * Fire resistance (FR) information
 - Critical for building applications
 - Performance under realistic fire and loading scenarios largely unknown
 - Behavior is complex under elevated temperatures
- * Performance in fire Concerns
 - Faster degradation of strength and stiffness
 - * Low high temperature tolerance
 - * Loss of bond with concrete
 - Flame spread and Smoke generation (combustible)

Numerical Model

Numerical Model

- Development of numerical model for FRP-strengthened RC beams
 - * FEM approach
 - * FRP and insulation HT behavior (mechanical and thermal)
 - Handle beams of different cross section (Rectangular, T, Isection)
 - **Bond deterioration**
 - * Axial restraint
 - ***** Different insulation schemes
 - * Failure criteria

Numerical Model

Analysis Procedure

Macroscopic finite element (FE) approach

- Discretize the beam into segments & elements
- Time increments

2

3

- Estb. fire temp. and cross sectional temp.
- Compute bond-slip & axial restraint force
- Develop M-k relationships for beam segments

8

9

Ls (Beam segment length)

10

11

12 13

14 | 15

6

5

Model Validation (MSU Tests)

5

Practical Applications for Computer Model

- *** Effective Insulation Schemes**
- *** Optimum Geometric Configuration**
- *** Optimum Insulation Thickness**

Conclusions

- FEM model, based on moment-curvature relationships, is capable of predicting the response of FRP-strengthened RC beams in the entire range from the pre-fire stage to collapse under fire conditions
 - *** HT material properties and different strain components**
 - * Fire induced bond degradation and axial restraint force
- Fire resistance in FRP-strengthened RC beams is not only influenced by the thickness of insulation, but also by insulation scheme (geometric configuration)
- The computer model can be applied to quantify the influence of various parameters (such as insulation schemes) on the fire response of FRP-strengthened RC beams and recommend broad guidelines for enhancing fire resistance

Thank You ??

QUESTIONS

Objective

- Develop a FE based computer model for tracing the fire response of FRP-strengthened RC beams
 - Develop macroscopic finite element based computer model
 - Undertake fire-resistance tests
 - Validate the model by comparing thermal and structural response
 - Conduct case studies and develop design guidelines for incorporation in codes and standard

Experimental Studies

Beam designation	CFRP	Insulation type	Insulation thickness (mm)		Fire scenario	Support	Load (kN)	Failure time (min)
			VG	EI-R				()
Beam B01	-	-	-	-	ASTM E119	SS	50	180
Beam B1	2×layers of 203 mm wide	Tyfo® Type A	25	0.1	Design	SS	70	NF*
Beam B2		Tyfo® Type B	25	0.1	Design	SS	70	NF*
Beam B3		Tyfo® Type A	25	0.1	ASTM E119	SS **	70	NF*
Beam B4		Tyfo® Type A	25	0.1	ASTM E119	AR ***	70	NF*

* No Failure ** Simply supported *** Axially restraint

Numerical Analysis

High Temp. Material Properties

Normalized thermal conductivity & thermal capacity for Tyfo® WR AFP Insulation

Hot Disk Equipment

Model Validation (MSU Tests)

Predicted and measured deflections

Predicted and measured Axial Restraint Force

Model Validation (Williams et al.)

Case Study

*** Optimum Insulation Thickness**

Model Validation (MSU Tests)

Predicted and measured temperatures

