Applications of Structural Fire Engineering

Prague, 29 - 30 April 2011

Fire Simulation Application in Fire Safety Design for Tunnel Structures

Aleš DUDÁČEK - Isabela BRADÁčOVÁ - Petr KUČERA

VSB-TU of Ostrava, Faculty of Safety Engineering
Department of Fire Protection
Czech Republic

Utilization of Fire Engineering Method in Practical Example - Railway Tunnel

AIMS

- safe evacuation of people in case of fire on a train in a railway tunnel:
- development of temperatures during a fire in a tunnel
- smoke stratification during a fire in a tunnel
- evacuation time assessment

TOOLS

- common available software
- using of empirical equations

TOPIC 1:

Modelling of temperature development and smoke stratification

Topic 1 - Fire Modelling in the railway tunnel

Input Parameters:

- Basic parameters
- simulation time - 20 minutes
- environment (temperature $10^{\circ} \mathrm{C}$, humidity $60 \%, \ldots$)
- others parameters (type of simulation LES, ...)
- Tunnel geometry
- computation space ($610 \mathrm{~m} \times 12 \mathrm{~m} \times 8 \mathrm{~m}$)
- construction (tunnel lining, portal,...)
- Definition of equipment
- train set - eight coaches and a locomotive (total length is 225 m)
- other obstructions (entry to an escape shaft)

Topic 1 - Fire Modelling in the railway tunnel

Input Parameters:

- Materials and surfaces
- physical properties of materials
- definition of surface properties
- Fire parameters
- fire initiation - first coach
- heat release rate HRR (constant vs. variable)

Suitable mathematical model?

Fire Dynamics Simulator

HRR of passenger coach

Time $[\mathrm{min}]$	Heat release rate [kW]
0	0
5	1800
10	6000
15	14000
20	21000

Topic 1- Fire Modelling in the railway tunnel

Smoke layer at the entry to the escape shaft in the $12^{\text {th }}$ minute (line across the tunnel tube represents the 2.5 m height).
Note: Cooled smoke layer will diminish visibility on the escape walkway already at the end of evacuation; however, escaping people will not be endangered.

Output parameters:

Isotherms just behind the train set at $40^{\circ} \mathrm{C}$ (violet), $50^{\circ} \mathrm{C}$ (grey) and $60^{\circ} \mathrm{C}$ (green) in the $15^{\text {th }}$ minute

Note: These limit temperatures will not occur at heights less than 2.5 m on the walkway; they will not endanger in any way people escaping towards the entry to the escape shaft.Total evacuation time is about 12 minutes

TOPIC 2:

Evacuation time assessment in the railway tunnel

Fire modelling

Evacuation

Topic 2-Evacuation in the railway tunnel

Input parameters:

- Dimension of escape routes
- two directions along the unprotected escape walkway along the tunnel tube (toward the portal and entry to the escape shaft)
- distance between the portal and the entry to the escape shaft is $\mathbf{6 0 5} \mathbf{~ m}$
- escape walkway width is 1.1 m
- width of door to the tunnel shaft is $1.4 \mathbf{~ m}$

Topic 2 - Evacuation in the railway tunnel

Input parameters:

- Definition of persons
- number of passengers - $\mathbf{6 4 0}$ pas. (placement of people in a coach is even)
- time delay before evacuation - $\mathbf{3 0} \mathbf{~ s e c .}$
- average walking speed of people - $\mathbf{1 . 0} \mathbf{~ m / s}$

- Way of evacuation

- one half of the passengers (320 pas.) is designed to escape towards the portal and the other half of the passengers towards the entry to the escape shaft.

Programme

 SIMULEX

In the course of evacuation they will not be endangered by high temperatures and smoke. Moreover, it has been verified that the visibility along the walkways is satisfactory.

THANK YOU FOR YOUR ATTENTION

