Stochastic Analysis of Structures in Fire by Monte Carlo Simulation

Kaihang Shi, Qianru Guo, and Ann Jeffers*

Dept of Civil and Environmental Engineering
University of Michigan
Ann Arbor, MI USA

Application: Stochastic Simulation of Protected Steel Beam

Reliability-based framework:

- 1. Characterize the sources of uncertainty
- 2. Quantify the probabilistic characteristics of each uncertain parameter
- 3. Define performance criteria for the structure based on strength, stability, and serviceability requirements
- 4. Evaluate the structural response stochastically by Monte Carlo simulation
- 5. Calculate the probability of failure

$$p_f = \frac{N_f}{N}$$

Stochastic Finite Element Simulation in Abaqus

Stochastic Heat Transfer Analysis

- Input:
 - 1 Python script file (.psf)
 - 1 Parametric input file (.inp)
- Output:
 - N Output database files (.odb)

Stochastic Structural Analysis

- Input:
 - 1 Python script file (.psf)
 - 1 Parametric input file (.inp)
- Output:
 - N Output database files (.odb)

Results and Conclusions

Time (min)

Failure: Beam deflection

exceeds L/30 = 162mm

Probability of Failure:

$$p_f = 1.3\%$$