Effective Thermal Conductivity of Fire Proof Materials and the Measuring Method

Outline of Lecture

- The Definition of Effective Thermal Conductivity
- Def.1: the average of the thermal conductivities when the specimen temperature was $400^{\sim} 600^{\circ} \mathrm{C}$
- Def.2: the thermal conductivity when the specimen temperature was $540^{\circ} \mathrm{C}$ ($1000^{\circ} \mathrm{F}$)
- Experimental Investigation
- Conclusion

Experimental Investigation

c) Dimensions of specimens

Experimental Investigation

Table 1 Testing results of effective thermal conductivity
Test Results

SpecimenID	Design Fireresistance (h)	Design Thickness (mm)	Actual Thickness (mm)	$\begin{gathered} \text { Time of } \\ \mathrm{Ts}=540^{\circ} \mathrm{C}(\mathrm{~min}) \end{gathered}$	Effective Thermal Conductivity (W/m•K)			
					By Def. 1	Average of Def. 1	By Def. 2	Average of Def. 2
1-1	0.5	10	11.2	41	0.2271		0.2277	
1-2	0.5	10	11.6	39	0.2472	0.2359	0.2448	0.2349
1-3	0.5	10	12.5	43	0.2334		0.2323	
2-2	1.0	17	14.2	41	0.2827	0.2597	0.2834	0.2604
2-3	1.0	17	14.5	47	0.2366		0.2373	
3-1	1.5	20	18.5	55	0.2476		0.2498	
3-2	1.5	20	18.0	62	0.2031	0.2339	0.2055	0.2366
3-3	1.5	20	18.0	53	0.2511		0.2545	
4-1	2.0	30	33.0	86	0.2373		0.2456	
4-2	2.0	30	31.0	91	0.2050	0.2299	0.2125	0.2374
4-3	2.0	30	31.5	81	0.2475		0.2542	
5-1	2.5	40	36.0	94	0.2300		0.2378	
5-2	2.5	40	36.0	98	0.2182	0.2272	0.2251	0.2342
5-3	2.5	40	36.0	94	0.2335		0.2396	

Ps: the steel plates are all sized $16 \mathrm{~mm} \times 200 \mathrm{~mm} \times 270 \mathrm{~mm}$;
the shape factor of the steel plates are all $145 \mathrm{~m}^{-1}$.
Def. 1 -the average of the thermal conductivity when the specimen temperature was $400 \sim 600^{\circ} \mathrm{C}$
Def.2-the thermal conductivity when the specimen temperature was $540^{\circ} \mathrm{C}\left(1000^{\circ} \mathrm{F}\right)$

Experimental Investigation

Test Results

Fig. 4 Comparison between Ts calculated and Ts measured

Conclusion

Proposed a measuring method suitable for thermal conductivity of fire proof materials and developed the corresponding test setup.

Proposed two definitions of thermal conductivity.
Verification and comparison of the two definitions were proposed. Comparison between the calculated temperature and the measured temperature indicated that the two definitions met the engineering requirements.

The thickness of fire insulation has little effect on the effective thermal conductivity. 20 mm was chosen as typical thickness taking actual use into consideration.

