

Structural fire engineering in building renovation

Application of Natural Fire and Heat Transfer Model to guarantee Fire Safety

Ir. Tom Molkens 29-04-2011

Design considerations

Main reason for advanced study; conscience problem of local school authority, because of leak in regulations for existing buildings

Description of case study

Audience

Material properties

Material	ρ [kg/m³]	ΔL/L [mm/mK]	λ [W/mK]	c [J/kgK]
Masonry	1600	5	0,70	840
Concrete	2300	10*	1,60*	1000*
Steel	7850	12*	14,6*	450*

* At 20°C, temperature dependent following EN's

Fire load = 2-zone model

- Fire load due to EN 1991-1-2 = 347 MJ/m² for school building raised till 511 MJ/m² for wooden false ceiling in audience.
- Fire growth = medium, RHR = 250 kW/m², modification factors of 1; 0,87; 0,78 and 1,43 (danger of activation; heat detection; off site fire brigade and surface)
- Combustion efficiency factor = 0,80 and a constant ratio of at least 2% openings in relation to the vertical surfaces

A A COlleges an a contract of the collegest the collegest of the collegest

Audience, actual situation

Analysis Name: VJC-aula+ramen+rwa

Analysis Name: VJC-aula

Mechanical response of structure

Conclusions

- With the aid of easy to use 2-zone models possibility to build up a tailor made solution for this particular problem.
- The proposed solution is withhold by the school authority and executed without delay in execution time.

