Fire resistance of steel trusses in fire using OpenSees

Panagiotis Kotsovinos and Asif Usmani

BRE Centre for Fire Safety Engineering

The University of Edinburgh Edinburgh, EH9 3JL United Kingdom

Background

Why *OpenSees*? OpenSource (free) and Object oriented framework, Multi-hazard

Total Lagrangian and Co-rotational element formulations have been implemented which account for phenomena experienced in a real fire: □geometric nonlinearity caused by large displacements

□ material nonlinearity due to the stiffness and strength reduction

Analysis of structures in fire is performed into two load steps >The mechanical load applied and remains constant >Thermal load

Usually Newton-Raphson method (load controlled)

Background

For each load step during the analysis an incremental displacement is found: { ΔF } = [K] { Δu }

Cannot follow the equilibrium path beyond the limit points

For redundant structures local failure does not imply global failure

Dynamic procedure for tracing post buckling path

Material degradation: reduction of material properties like Young's modulus and Yield Stress

✓ Steel01Thermal: Uniaxial bilinear steel material with kinematic hardening

✓ *Steel02Thermal*: Uniaxial Giuffre-Menegotto-Pinto steel material with isotropic strain hardening.

Numerical examples

One member truss

□Solved by Lin et al.

□Both TL and CR employed

□DT= 1°C

□Heating and cooling

Yielding occurs at around 500°C

- The comparison shows very good agreement
- Strain hardening does not have significant effect
- Both formulations present similar results

Two Member Truss

Lin et al (2010) using Generalised Displacement Control (GDC)

□Loses stability through snap-through buckling

Dynamic procedure was followed

- Truss deflects upwards but when the members have yielded changes direction towards the other side
- Preloading plays a role in the behaviour of the truss

