International Conference Applications of Structural Fire Engineering

Prague 19-20 February, 2009

¹Susana O. Santos, ¹João P. C. Rodrigues, ²Romildo D. Toledo Filho & ²R. V. Velasco ¹Faculty of Science and Technology of University of Coimbra, Portugal & ²Federal University of Rio de Janeiro, Department of Civil Engineering, COPPE, Rio de Janeiro, Brazil

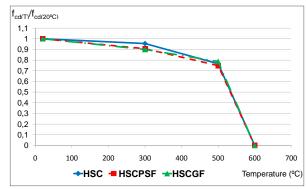
 Study of concrete behavior at high temperatures, and characterization of the spalling phenomenon, through the development of concretes with enhanced fire behavior.

D PORTUGUESE EXPERIMENTS

 Three concrete compositions: one without fibers (HSC), one with steel and polypropylene (PP) fibers (HSCSPF) and a third one with steel and glass fibers (HSCGF) (Table 1);

Figure 1 - Test system.

BRAZILIAN EXPERIMENTS


- Concrete mixtures reinforced with 0.25% and 0.5% by volume of PP fibers (C65PP0.25/C85PP0.25 and C65PP0.5/C85PP0.5 series, respectively) (Table 2);
- Assessment of residual compressive strength and elastic modulus after heating specimens (400, 650, 900°C) at a rate of 10°C/min and cooling to room temperature (Fig. 3);
- Spalling and total porosity studies were also carried out.

□ CONCLUSIONS

- The inclusion of PP fibers in the concrete compositions avoided spalling. The specimens of concrete with steel and PP fibers had better performance than those with glass fibers;
- In compression tests, the glass fibers have an identical behavior to the PP and steel fibers;
- At high temperatures, the concrete specimens reinforced with PP fibers showed a strength and stiffness reduction more pronounced than those observed to the plain HPC mixtures.

Table 1 - Concrete compositions (per <i>m3)</i>												
		CEM	CS1	CS2	CA	FS	LF	W/C	SP	PF	SF	GF
		[kg/m³]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]		[%CEM]	[kg/m3]	[kg/m3]	[kg/m3]
F	ISC	400	600	321	230	470	200	0.3	2.9	-	-	-
HS	CSPF	400	600	321	230	470	200	0.3	11.6	1	70	-
HS	SCGF	400	600	321	230	470	200	0.3	11.6	-	-	1.5

- Compressive strength tests (Fig. 1), at high temperatures, in cylindrical specimens of Ø=75mm and h=225mm (h/Ø=3 according to the RILEM TC-200HTC recommendations) were carried out.
- The specimens were subjected to a constant load (0.7f_{cd}) during the heating and stabilization period of the temperature.
- The specimens were heated at a heating rate of 3°C/min, until the desired level of temperature (300°C, 500°C and 600°C). (Fig. 2).

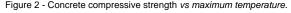
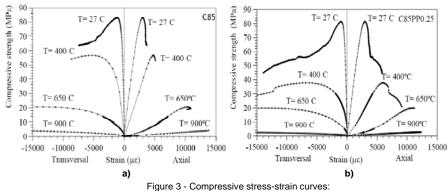



Table 2 - Mix proportions for the polypropylene fiber reinforced concrete - HSC (per m3)

	CEM [kg]	SILICA [kg]	SAND [kgj	AGG. [kg]	W [I]	SP [1]	FIBRES [kg]		
C65	365	37	780	857	156	8.30	-		
C85	414	42	694	895	151	8.49	-		
C65PP0.25	365	37	780	857	156	8.30	2.28		
C65PP0.5	365	37	780	857	156	8.30	4.56		
C85PP0.25	414	42	694	895	151	8.49	2.28		
C85PP0.5	414	42	694	895	151	8.49	4.56		

(a) Concrete series C85; (b) Composite series C85PP0.25

CIEC – Center for Research in Civil Engineering Research Group on Fire Safety Engineering Departamento de Engenharia Civil da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Rua Luís Reis Santos. 3030-788 Coimbra. PORTUGAL Telef: +351 239 797100. Fax: +351 239 797123.

Universidade Federal do Rio de Janeiro, Brasil Laboratório de Estruturas – COPPE/UFRJ.

